Skip to main content

Introduction

  • Chapter
  • First Online:
Advanced Robotics for Medical Rehabilitation

Part of the book series: Springer Tracts in Advanced Robotics ((STAR,volume 108))

Abstract

Robots can be considered as reprogrammable devices which can be used to complete certain tasks in an autonomous manner. While robots have long been used for automation of industrial processes, there is a growing trend where robotic devices are used to provide services for end users.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. G.A. Donnan, M. Fisher, M. Macleod, S.M. Davis, Stroke. The Lancet 371, 1612–1623 (2008)

    Article  Google Scholar 

  2. Annual Report 2009. Stroke Foundation of New Zealand Inc. (2010)

    Google Scholar 

  3. M. Khawaja, N. Thomson, Population ageing in New Zealand (2000)

    Google Scholar 

  4. R.W. Teasell, L. Kalra, What’s New in stroke rehabilitation. Stroke 35, 383–385 (2004)

    Article  Google Scholar 

  5. V.S. Huang, J.W. Krakauer, Robotic neurorehabilitation: A computational motor learning perspective. J. NeuroEng. Rehabil, 6 (2009)

    Google Scholar 

  6. K. Laver, S. George, J. Ratcliffe, M. Crotty, Virtual reality stroke rehabilitation—hype or hope? Aust. Occup. Ther. J. 58, 215–219 (2011)

    Article  Google Scholar 

  7. W.S. Harwin, T. Rahman, R.A. Foulds, A review of design issues in rehabilitation robotics with reference to North American research. IEEE Trans. Rehabil. Eng. 3, 3–13 (1995)

    Article  Google Scholar 

  8. N. Tejima, Rehabilitation robotics: a review. Adv. Robot. 14, 551–564 (2000)

    Article  Google Scholar 

  9. H.I. Krebs, J.J. Palazzolo, L. Dipietro, M. Ferraro, J. Krol, K. Rannekleiv, B.T. Volpe, N. Hogan, Rehabilitation robotics: performance-based progressive robot-assisted therapy. Auton. Robots 15, 7–20 (2003)

    Article  Google Scholar 

  10. S. Hesse, H. Schmidt, C. Werner, A. Bardeleben, Upper and lower extremity robotic devices for rehabilitation and for studying motor control. Curr. Opin. Neurol. 16, 705–710 (2003)

    Article  Google Scholar 

  11. H.I. Krebs, B.T. Volpe, M.L. Aisen, W. Hening, A. Adamovich, H. Poizner, K. Subrahmanyan, N. Hogan, Robotic applications in neuromotor rehabilitation. Robotica 21, 3–11 (2003)

    Article  Google Scholar 

  12. M. Girone, G. Burdea, M. Bouzit, V. Popescu, J.E. Deutsch, Stewart platform-based system for ankle telerehabilitation. Auton. Robots 10, 203–212 (2001)

    Article  MATH  Google Scholar 

  13. H.I. Krebs, B.T. Volpe, M.L. Aisen, N. Hogan, Increasing productivity and quality of care: Robot-aided neuro-rehabilitation. J. Rehabil. Res. Dev. 37, 639–652 (2000)

    Google Scholar 

  14. J.A. Saglia, N.G. Tsagarakis, J.S. Dai, D.G. Caldwell, Control strategies for ankle rehabilitation using a high performance ankle exerciser, in IEEE International Conference on Robotics and Automation (2010), pp. 2221–2227

    Google Scholar 

  15. R. Riener, M. Frey, M. Bernhardt, T. Nef, G. Colombo, Human-centered rehabilitation robotics, in IEEE International Conference on Rehabilitation Robotics (2005), pp. 319–322

    Google Scholar 

  16. A. Duschau-Wicke, J. Von Zitzewitz, A. Caprez, L. Lunenburger, R. Riener, Path control: a method for patient-cooperative robot-aided gait rehabilitation. IEEE Trans. Neural Syst. Rehabil. Eng. 18, 38–48 (2010)

    Article  Google Scholar 

  17. A. Roy, H.I. Krebs, S.L. Patterson, T.N. Judkins, I.K. Larry, R.M. Macko, N. Hogan, Measurement of human ankle stiffness using the anklebot, in International Conference on Rehabilitation Robotics (2007), pp. 356–363

    Google Scholar 

  18. H. Vallery, A. Duschau-Wicke, R. Riener, Generalized elasticities improve patient-cooperative control of rehabilitation robots, in 2009 IEEE International Conference on Rehabilitation Robotics, ICORR 2009 (2009), pp. 535–541

    Google Scholar 

  19. L. Marchal-Crespo, D.J. Reinkensmeyer, Review of control strategies for robotic movement training after neurologic injury. J. NeuroEng. Rehabil. 6 (2009)

    Google Scholar 

  20. T. Nef, M. Mihelj, R. Riener, ARMin: a robot for patient-cooperative arm therapy. Med. Biol. Eng. Compu. 45, 887–900 (2007)

    Article  Google Scholar 

  21. J.E. Deutsch, J. Latonio, G. Burdea, R. Boian, Post-stroke rehabilitation with the Rutgers Ankle System: a case study. Presence 10, 416–430 (2001)

    Article  Google Scholar 

  22. D.J. Reinkensmeyer, J.L. Emken, S.C. Cramer, Robotics, motor learning, and neurologic recovery. Annu. Rev. Biomed. Eng. 6, 497–525 (2004)

    Article  Google Scholar 

  23. H.I. Krebs, D. Williams, J. Celestino, S.K. Charles, D. Lynch, N. Hogan, Robot-aided neurorehabilitation: a robot for wrist rehabilitation. IEEE Trans. Neural Syst. Rehabil. Eng. 15, 327–335 (2007)

    Article  Google Scholar 

  24. Hocoma, http://www.hocoma.com/en/products/lokomat/

  25. R. Riener, L. Lunenburger, S. Jezernik, M. Anderschitz, G. Colombo, V. Dietz, Patient-cooperative strategies for robot aided treadmill training: first experimental results. IEEE Trans. Neural Syst. Rehabil. Eng. 13, 380–394 (2005)

    Article  Google Scholar 

  26. S. Jezernik, G. Colombo, M. Morari, Automatic gait-pattern adaptation for rehabilitation with 4-dof robotic orthosis. IEEE Trans. Robot. Autom. 20, 574–582 (2004)

    Article  Google Scholar 

  27. J.A. Blaya, H. Herr, Adaptive control of a variable-impedance ankle-foot orthosis to assist drop-foot gait. IEEE Trans. Neural Syst. Rehabil. Eng. 12, 24–31 (2004)

    Article  Google Scholar 

  28. N. Hogan, Stable execution of contact tasks using impedance control, in IEEE International Conference on Robotics and Automation (1987), pp. 1047–1054

    Google Scholar 

  29. N. Hogan, S.P. Buerger, Impedance and interaction control, in Robotics and Automation Handbook, ed. by T. Kurfess (CRC Press, New York, 2005)

    Google Scholar 

  30. H.S. Lo, S.Q. Xie, Exoskeleton robots for upper-limb rehabilitation: state of the art and future prospects. Med. Eng. Phys. 34, 261–268 (2012)

    Article  Google Scholar 

  31. R.A.R.C. Gopura, K. Kiguchi, Mechanical designs of active upper-limb exoskeleton robots state-of-the-art and design difficulties, in IEEE International Conference on Rehabilitation Robotics (2009), pp. 178–187

    Google Scholar 

  32. M. Dettwyler, A. Stacoff, I.A. Kramers-de Quervain, E. Stussi, Modelling of the ankle joint complex. Reflections with regards to ankle prostheses. Foot Ankle Surg. 10, 109–119 (2004)

    Google Scholar 

  33. Accident Compensation Corporation, New Zealand. http://www.acc.co.nz/for-providers/resources/WCMZ002647?ssSourceNodeId=4249&ssSourceSiteId=1494

  34. G. Zeng, A. Hemami, An overview of robot force control. Robotica 15, 473–482 (1997)

    Article  Google Scholar 

  35. M.R. Safran, J.E. Zachazewski, R.S. Benedetti, A.R.I. Bartolozzi, R. Mandelbaum, Lateral ankle sprains: a comprehensive review Part 2: treatment and rehabilitation with an emphasis on the athlete. Med. Sci. Sports Exerc. 31, S438–S447 (1999)

    Article  Google Scholar 

  36. C.G. Mattacola, M.K. Dwyer, Rehabilitation of the ankle after acute sprain or chronic instability. J. Athletic Training 37, 413–429 (2002)

    Google Scholar 

  37. B. Siciliano, L. Villani, Robot force control (Kluwer Academic Publishers, Boston, 1999)

    Book  MATH  Google Scholar 

  38. T. Lefebvre, J. Xiao, H. Bruyninckx, G. Gersem, Active compliant motion: a survey. Adv. Robot. 19, 479–499 (2005)

    Article  Google Scholar 

  39. M.H. Raibert, J.J. Craig, Hybrid position/force control of manipulators. J. Dyn. Syst. Meas. Control Trans. ASME 103, 126–133 (1981)

    Article  Google Scholar 

  40. N. Hogan, Impedance control: an approach to manipulation: Parts I, II and III. J. Dyn. Syst. Meas. Contr. 107, 17–24 (1985)

    Article  MATH  Google Scholar 

  41. A. Roy, H.I. Krebs, D. Williams, C.T. Bever, L.W. Forrester, R.M. Macko, N. Hogan, Robot-aided neurorehabilitation: a novel robot for ankle rehabilitation. IEEE Trans. Rob. 25, 569–582 (2009)

    Article  Google Scholar 

  42. J. Yoon, J. Ryu, K.-B. Lim, Reconfigurable ankle rehabilitation robot for various exercises. J. Rob. Syst. 22, S15–S33 (2006)

    Article  Google Scholar 

  43. J.A. Saglia, N.G. Tsagarakis, J.S. Dai, D.G. Caldwell, A high-performance redundantly actuated mechanism for ankle rehabilitation. Int. J. Rob. Res. 28, 1216–1227 (2009)

    Article  Google Scholar 

  44. M. Bernhardt, M. Frey, G. Colombo, T. Rahman, Hybrid force-position control yields cooperative behaviour of the rehabilitation robot LOKOMAT, in IEEE International Conference on Rehabilitation Robotics (2005), pp. 536–539

    Google Scholar 

  45. R. Colbaugh, H. Seraji, K. CGlass, Direct adaptive impedance control of robot manipulators. J. Rob. Syst. 10, 217–248 (1993)

    Google Scholar 

  46. C.-C. Cheah, D. Wang, Learning impedance control for robotic manipulators. IEEE Trans. Robot. Autom. 14, 452–465 (1998)

    Article  Google Scholar 

  47. S.K. Singh, D.O. Popa, Analysis of some fundamental problems in adaptive control of force and impedance behavior: theory and experiments. IEEE Trans. Robot. Autom. 11, 912–921 (1995)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shane (S.Q.) Xie .

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Xie, S. (2016). Introduction. In: Advanced Robotics for Medical Rehabilitation. Springer Tracts in Advanced Robotics, vol 108. Springer, Cham. https://doi.org/10.1007/978-3-319-19896-5_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-19896-5_1

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-19895-8

  • Online ISBN: 978-3-319-19896-5

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics