Skip to main content

Controlling False Discovery Rate in Signal Space for Transformation-Invariant Thresholding of Statistical Maps

  • Conference paper
  • First Online:
Information Processing in Medical Imaging (IPMI 2015)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 9123))

Included in the following conference series:

Abstract

Thresholding statistical maps with appropriate correction of multiple testing remains a critical and challenging problem in brain mapping. Since the false discovery rate (FDR) criterion was introduced to the neuroimaging community a decade ago, various improvements have been proposed. However, a highly desirable feature, transformation invariance, has not been adequately addressed, especially for voxel-based FDR. Thresholding applied after spatial transformation is not necessarily equivalent to transformation applied after thresholding in the original space. We find this problem closely related to another important issue: spatial correlation of signals. A Gaussian random vector-valued image after normalization is a random map from a Euclidean space to a high-dimension unit-sphere. Instead of defining the FDR measure in the image’s Euclidean space, we define it in the signals’ hyper-spherical space whose measure not only reflects the intrinsic “volume” of signals’ randomness but also keeps invariant under images’ spatial transformation. Experiments with synthetic and real images demonstrate that our method achieves transformation invariance and significantly minimizes the bias introduced by the choice of template images.

This work is supported by grants P41EB015922, U54EB020406, R01MH0974343, and K01EB013633 from the National Institutes of Health (NIH).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Benjamini, Y., Heller, R.: False discovery rates for spatial signals. J. Am. Stat. Assoc. 102(480), 1272–1281 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  2. Benjamini, Y., Hochberg, Y.: Controlling the false discovery rate: a practical and powerful approach to multiple testing. J. Roy. Stat. Soc.: Ser. B (Method.) 57(1), 289–300 (1995)

    MATH  MathSciNet  Google Scholar 

  3. Benjamini, Y., Hochberg, Y.: Multiple hypotheses testing with weights. Scand. J. Stat. 24(3), 407–418 (1997)

    Article  MATH  MathSciNet  Google Scholar 

  4. Benjamini, Y., Yekutieli, D.: The control of the false discovery rate in multiple testing under dependency. Ann. Stat. 29(4), 1165–1188 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  5. Bennett, C.M., Miller, M.B., Wolford, G.L.: Neural correlates of interspecies perspective taking in the post-mortem atlantic salmon: an argument for multiple comparisons correction. NeuroImage 47, S125 (2009)

    Article  Google Scholar 

  6. Chumbley, J., Worsley, K., Flandin, G., Friston, K.: Topological FDR for neuroimaging. Neuroimage 49(4), 3057–3064 (2010)

    Article  Google Scholar 

  7. Chumbley, J.R., Friston, K.J.: False discovery rate revisited: FDR and topological inference using Gaussian random fields. Neuroimage 44(1), 62–70 (2009)

    Article  Google Scholar 

  8. Fonov, V.S., Evans, A.C., McKinstry, R.C., Almli, C.R., Collins, D.L.: Unbiased nonlinear average age-appropriate brain templates from birth to adulthood. NeuroImage 47, S102 (2009)

    Article  Google Scholar 

  9. Genovese, C.R., Lazar, N.A., Nichols, T.: Thresholding of statistical maps in functional neuroimaging using the false discovery rate. Neuroimage 15(4), 870–878 (2002)

    Article  Google Scholar 

  10. Heller, R., Stanley, D., Yekutieli, D., Rubin, N., Benjamini, Y.: Cluster-based analysis of FMRI data. NeuroImage 33(2), 599–608 (2006)

    Article  Google Scholar 

  11. Hochberg, Y., Tamhane, A.C.: Multiple Comparison Procedures. Wiley Series in Probability and Statistics. Wiley, Hoboken (1987)

    Book  MATH  Google Scholar 

  12. Lancaster, J.L., Woldorff, M.G., Parsons, L.M., Liotti, M., Freitas, C.S., Rainey, L., Kochunov, P.V., Nickerson, D., Mikiten, S.A., Fox, P.T.: Automated talairach atlas labels for functional brain mapping. Hum. Brain Mapp. 10(3), 120–131 (2000)

    Article  Google Scholar 

  13. Li, J., Ji, L.: Adjusting multiple testing in multilocus analyses using the eigenvalues of a correlation matrix. Heredity 95(3), 221–227 (2005)

    Article  Google Scholar 

  14. Nguyen, H.D., McLachlan, G.J., Cherbuin, N., Janke, A.L.: False discovery rate control in magnetic resonance imaging studies via Markov random fields. IEEE Trans. Med. Imaging 33(8), 1735–1748 (2014)

    Article  Google Scholar 

  15. Perone Pacifico, M., Genovese, C., Verdinelli, I., Wasserman, L.: False discovery control for random fields. J. Am. Stat. Assoc. 99(468), 1002–1014 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  16. Rosenthal, R.: The file drawer problem and tolerance for null results. Psychol. Bull. 86(3), 638–641 (1979)

    Article  Google Scholar 

  17. Satterthwaite, T.D., Elliott, M.A., Ruparel, K., Loughead, J., Prabhakaran, K., Calkins, M.E., Hopson, R., Jackson, C., Keefe, J., Riley, M., et al.: Neuroimaging of the Philadelphia neurodevelopmental cohort. NeuroImage 86, 544–553 (2014)

    Article  Google Scholar 

  18. Shattuck, D.W., Mirza, M., Adisetiyo, V., Hojatkashani, C., Salamon, G., Narr, K.L., Poldrack, R.A., Bilder, R.M., Toga, A.W.: Construction of a 3D probabilistic atlas of human cortical structures. NeuroImage 39(3), 1064–1080 (2008)

    Article  Google Scholar 

  19. Storey, J.D.: A direct approach to false discovery rates. J. Roy. Stat. Soc.: Ser. B (Stat. Method.) 64(3), 479–498 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  20. Worsley, K.J., Andermann, M., Koulis, T., MacDonald, D., Evans, A.C.: Detecting changes in nonisotropic images. Hum. Brain Mapp. 8(2–3), 98–101 (1999)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Junning Li .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this paper

Cite this paper

Li, J., Shi, Y., Toga, A.W. (2015). Controlling False Discovery Rate in Signal Space for Transformation-Invariant Thresholding of Statistical Maps. In: Ourselin, S., Alexander, D., Westin, CF., Cardoso, M. (eds) Information Processing in Medical Imaging. IPMI 2015. Lecture Notes in Computer Science(), vol 9123. Springer, Cham. https://doi.org/10.1007/978-3-319-19992-4_10

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-19992-4_10

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-19991-7

  • Online ISBN: 978-3-319-19992-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics