Skip to main content

Finding Connected Subgraphs of Fixed Minimum Density: Implementation and Experiments

  • Conference paper
  • First Online:
Experimental Algorithms (SEA 2015)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 9125))

Included in the following conference series:

Abstract

We consider the following problem. Given a graph and a rational number \(\mu \), \(0 < \mu \le 1\), find a connected subgraph of density at least \(\mu \) with the largest number of vertices. Here, the density of an \(n\)-vertex graph with \(m\) edges is \(m/\left( {\begin{array}{c}n\\ 2\end{array}}\right) \). This problem arises in many application contexts such as community detection in social networks. We implement a branch and bound algorithm and tune it for efficiency on sparse real-world graphs for the case \(\mu \ge 1/2\). Central issues for the implementation are the choice of branching candidates, two new upper bounding procedures, and several data reduction and early termination rules.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Abello, J., Pardalos, P.M., Resende, M.G.C.: On maximum clique problems in very large graphs. In: External Memory Algorithms and Visualization, vol. 50 of DIMACS, pp. 119–130. AMS (1999)

    Google Scholar 

  2. Abello, J., Resende, M.G.C., Sudarsky, S.: Massive quasi-clique detection. In: Rajsbaum, S. (ed.) LATIN 2002. LNCS, vol. 2286, pp. 598–612. Springer, Heidelberg (2002)

    Chapter  Google Scholar 

  3. Bader, G.D., Hogue, C.W.: An automated method for finding molecular complexes in large protein interaction networks. BMC Bioinformatics 4(1), 2 (2003)

    Article  Google Scholar 

  4. Balasundaram, B., Pajouh, F.M.: Graph theoretic clique relaxations and applications. In: Handbook of Combinatorial Optimization, pp. 1559–1598. Springer (2013)

    Google Scholar 

  5. Boginski, V., Butenko, S., Pardalos, P.M.: On structural properties of the market graph. In: Innovations in Financial and Economic Networks. New Dimensions in Networks, pp. 29–45. Edward Elgar Publishing, Cheltenham, England (2003)

    Google Scholar 

  6. Downey, R.G., Fellows, M.R.: Fixed-parameter tractability and completeness II: On completeness for W[1]. Theoretical Computer Science 141(1&2), 109–131 (1995)

    Article  MATH  MathSciNet  Google Scholar 

  7. Feige, U., Seltser, M.: On the densest \(k\)-subgraph problem. Technical report,The Weizmann Institute, Department of Applied Math and Computer Science (1997)

    Google Scholar 

  8. Komusiewicz, C., Sorge, M.: Finding dense subgraphs of sparse graphs. In: Thilikos, D.M., Woeginger, G.J. (eds.) IPEC 2012. LNCS, vol. 7535, pp. 242–251. Springer, Heidelberg (2012)

    Chapter  Google Scholar 

  9. Kosub, S.: Local Density. In: Brandes, U., Erlebach, T. (eds.) Network Analysis. LNCS, vol. 3418, pp. 112–142. Springer, Heidelberg (2005)

    Chapter  Google Scholar 

  10. Pajouh, F.M., Miao, Z., Balasundaram, B.: A branch-and-bound approach for maximum quasi-cliques. Annals of Operations Research 216(1), 145–161 (2014)

    Article  MATH  MathSciNet  Google Scholar 

  11. Pattillo, J., Veremyev, A., Butenko, S., Boginski, V.: On the maximum quasi-clique problem. Discrete Applied Mathematics 161(1–2), 244–257 (2013)

    Article  MATH  MathSciNet  Google Scholar 

  12. Raghavendra, P., Steurer, D.: Graph expansion and the unique games conjecture. In: Proc. 42nd STOC, pp. 755–764. ACM (2010)

    Google Scholar 

  13. Wagner, A., Fell, D.A.: The small world inside large metabolic networks. Proceedings of the Royal Society of London. Series B: Biological Sciences 268(1478), 1803–1810 (2001)

    Article  Google Scholar 

  14. Zhang, J., Chen, Y.: Monte Carlo algorithms for identifying densely connected subgraphs. Journal of Computational and Graphical Statistics (2014)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Manuel Sorge .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this paper

Cite this paper

Komusiewicz, C., Sorge, M., Stahl, K. (2015). Finding Connected Subgraphs of Fixed Minimum Density: Implementation and Experiments. In: Bampis, E. (eds) Experimental Algorithms. SEA 2015. Lecture Notes in Computer Science(), vol 9125. Springer, Cham. https://doi.org/10.1007/978-3-319-20086-6_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-20086-6_7

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-20085-9

  • Online ISBN: 978-3-319-20086-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics