Skip to main content

Computational Modelling of Low Voltage Resonant Drift of Scroll Waves in the Realistic Human Atria

  • Conference paper
  • First Online:
Functional Imaging and Modeling of the Heart (FIMH 2015)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 9126))

Abstract

This study evaluated the effects of human atrial anatomy and fibre orientation on the effectiveness of a low voltage resonant defibrillation method. The Courtemanche-Ramirez-Nattel model was modified to simulate scroll wave re-entry that may represent a form of atrial fibrillation. The cell models were incorporated into a 3D anatomical model to simulate re-entry. The single shock threshold to eliminate re-entry in the isotropic and anisotropic 3D models was estimated as the reference point for the low energy defibrillation effectiveness. The low voltage scroll wave termination protocol was based on the resonant drift of stationary scroll waves due to feedback-controlled periodic stimulation. The global resonant feedback stimulation can work in the realistic anatomy model in principle. Further investigation to find optimal parameters for the resonant low energy defibrillation in anatomically realistic models must include optimal location of electrodes as well as stimulation protocol improvement.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Yang, F., Sha, Q., Patterson, R.P.: A novel electrode placement strategy for low-energy internal cardioversion of atrial fibrillation: a simulation study. Int. J. Cardiol. 158, 149–152 (2012)

    Article  Google Scholar 

  2. Biktashev, V.N., Holden, A.V.: Design principles of a low voltage cardiac defibrillator based on the effect of feedback resonant drift. J. Theor. Biol. 169, 101–112 (1994)

    Article  Google Scholar 

  3. Biktashev, V.N., Holden, A.V.: Control of re-entrant activity in a model of mammalian atrial tissue. Proc. Biol. Sci. 260, 211–217 (1995)

    Article  Google Scholar 

  4. Morgan, S.W., Plank, G., Biktasheva, I.V., Biktashev, V.N.: Low energy defibrillation in human cardiac tissue: a simulation study. Biophys. J. 96, 1364–1373 (2009)

    Article  Google Scholar 

  5. Courtemanche, M., Ramirez, R.J., Nattel, S.: Ionic mechanisms underlying human atrial action potential properties: insights from a mathematical model. AJP 275, H301–321 (1998)

    Google Scholar 

  6. Kharche, S., Biktasheva, I.V., Seemann, G., Zhang, H., Biktashev, V.N.: A computer simulation study of anatomy induced drift of spiral waves in the human atrium. BioMed Research International (2015, in press)

    Google Scholar 

  7. Seemann, G., Hoper, C., Sachse, F.B., Dossel, O., Holden, A.V., Zhang, H.: Heterogeneous three-dimensional anatomical and electrophysiological model of human atria. Philos. Trans. Math. Phys. Eng. Sci. 364, 1465–1481 (2006)

    Article  Google Scholar 

  8. Biktashev, V.N., Holden, A.V.: Reentrant waves and their elimination in a model of mammalian ventricular tissue. Chaos 8, 48–56 (1998)

    Article  MATH  Google Scholar 

  9. Montani, C., Scateni, R., Scopigno, R.: A modified look-up table for implicit disambiguation of marching cubes. Vis. Comput. 10, 353–355 (1994)

    Article  Google Scholar 

  10. Barkley, D., Dowle, M.: EZ-SCROLL: a code for simulating scroll waves (http://www.warwick.ac.uk/~masax/Software/ez_software.html) (2007)

  11. Biktashev, V.N., Holden, A.: Resonant drift of autowave vortices in 2D and the effects of boundaries and inhomogeneities. Chaos, Solitons Fractals 5, 575–622 (1995)

    Article  MATH  Google Scholar 

  12. McFarlane, R., Biktasheva, I.V.: Beatbox—a computer simulation environment for computational biology of the heart. In: Gelenbe, E., Abramsky, S., Sassone, A. (eds.) Visions of Computer Science— BCS International Academic Conference, pp. 99–109. British Computer Society, London (2008)

    Google Scholar 

  13. Biktashev, V.N., Karpov, A.V., Biktasheva, I.V., McFarlane, R., Kharche, S.R., Antonioletti, M., Jackson, A.: BeatBox - HPC environment for biophysically and anatomically realistic cardiac simulations. (http://empslocal.ex.ac.uk/people/staff/vnb262/projects/BeatBox/index.html) (2013)

  14. Kharche, S., Biktasheva, I.V., Zhang, H., Biktashev, V.N.: Cardioversion in the human atria: a simulation study. In: CINC Conference (2012)

    Google Scholar 

  15. Dierckx, H., Brisard, E., Verschelde, H., Panfilov, A.V.: Drift laws for spiral waves on curved anisotropic surfaces. PRE 88, 012908 (2013)

    Article  Google Scholar 

  16. Biktasheva, I.V., Dierckx, H., Biktashev, V.N.: Drift of scroll waves in thin layers caused by thickness features: asymptotic theory and numerical simulations. PRL (2015, in press)

    Google Scholar 

  17. Verschelde, H., Dierckx, H., Bernus, O.: Covariant stringlike dynamics of scroll wave filaments in anisotropic cardiac tissue. PRL 99, 168104 (2007)

    Article  Google Scholar 

  18. Nikolaev, E.V., Biktashev, V.N., Holden, A.: On feedback resonant drift and interaction with the boundaries in circular and annular excitable media. Chaos, Solitons Fractals 9, 363–376 (1998)

    Article  Google Scholar 

  19. Pak, H.N., Liu, Y.B., Hayashi, H., Okuyama, Y., Chen, P.S., Lin, S.F.: Synchronization of ventricular fibrillation with real-time feedback pacing: implication to low-energy defibrillation. AJP 285, H2704–2711 (2003)

    Google Scholar 

  20. Fenton, F.H., Luther, S., Cherry, E.M., Otani, N.F., Krinsky, V., Pumir, A., Bodenschatz, E., Gilmour Jr, R.F.: Termination of atrial fibrillation using pulsed low-energy far-field stimulation. Circulation 120, 467–476 (2009)

    Article  Google Scholar 

  21. Ambrosi, C.M., Ripplinger, C.M., Efimov, I.R., Fedorov, V.V.: Termination of sustained atrial flutter and fibrillation using low-voltage multiple-shock therapy. Heart Rhythm 8, 101–108 (2011)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vadim N. Biktashev .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this paper

Cite this paper

Kharche, S.R., Biktasheva, I.V., Seemann, G., Zhang, H., Zhao, J., Biktashev, V.N. (2015). Computational Modelling of Low Voltage Resonant Drift of Scroll Waves in the Realistic Human Atria. In: van Assen, H., Bovendeerd, P., Delhaas, T. (eds) Functional Imaging and Modeling of the Heart. FIMH 2015. Lecture Notes in Computer Science(), vol 9126. Springer, Cham. https://doi.org/10.1007/978-3-319-20309-6_48

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-20309-6_48

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-20308-9

  • Online ISBN: 978-3-319-20309-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics