Skip to main content

Animal Models of Nonalcoholic Fatty Liver Disease

  • Chapter
Alcoholic and Non-Alcoholic Fatty Liver Disease

Abstract

Nonalcoholic fatty liver disease (NAFLD) is the most common liver disease in the Western world, accompanying the rise in obesity and its related metabolic disorders. Though research in the field is vibrant, enormous gaps in knowledge still remain about its physiology, how to identify patients who are most susceptible for adverse outcomes, and the best therapeutic approach. It is difficult to study NAFLD in humans, since the disease evolves slowly and encompasses diverse liver phenotypes that are challenging to differentiate noninvasively. Steatosis is the most clinically benign NAFLD phenotype, while nonalcoholic steatohepatitis (NASH) has a much more variable prognosis that seems to depend upon the severity of hepatocyte injury and propensity for progressive fibrosis. NASH patients in whom fibrosis progresses to cirrhosis ultimately develop the worst liver-related outcomes because cirrhosis increases the risk for primary liver cancer, liver-related morbidity, and death from liver disease. Animal models that mimic the spectrum of human NAFLD pathology are crucial to overcome the challenges inherent in human NAFLD research so that knowledge about this disease can advance. There are many animal models for NAFLD, none of them perfect. Some are more suitable for studying the metabolic derangements, others for studying inflammation and fibrogenesis. The most used animals are rodents, particularly mice. NAFLD can be induced through specific diets or through genetic manipulation. This chapter will review the different animal models available, with a critical appraisal of their advantages and limitations.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

NAFLD:

Nonalcoholic fatty liver disease

NASH:

Nonalcoholic steatohepatitis

MCD:

Methionine-choline deficient

VLDL:

Very-low-density lipoprotein

SCD-1:

Stearoyl-coenzyme A desaturase-1

PEMT:

Phosphatidylethanolamine N-methyltransferase

SAMe:

S-adenosyl methionine

MAT:

Methionine adenosyltransferase

GSH:

Glutathione

ROS:

Reactive oxygen species

MTHFR:

Methylenetetrahydrofolate reductase

ALT:

Alanine aminotransferase

TGF:

Transforming growth factor

LPS:

Lipopolysaccharide

HFD:

High-fat diet

GTG:

Gold thioglucose

oxLDL:

Oxidized low-density lipoprotein

ALIOS:

American lifestyle-induced obesity syndrome

CLA:

Conjugated linoleic acid

CDAA:

Choline-deficient l-amino acids defined

DEN:

Diethylnitrosamine

JAK:

Janus kinase

STAT:

Signal transducer and activator of transcription

MAPK:

Mitogen-activated protein kinase

PI3K:

Phosphoinositide 3-kinase

AMPK:

AMP-activated protein kinase

MC-R:

Melanocortin receptor

NOD:

Nonobese diabetic

OLETF:

Otsuka Long-Evans Tokushima fatty

CCK:

Cholecystokinin

SREBP:

Sterol regulatory element-binding protein

PEPCK:

Phosphoenolpyruvate carboxykinase

AOX:

Acyl-coenzyme A oxidase

PPAR:

Peroxisome proliferator-activated receptor

MTP:

Microsomal trifunctional protein

PTEN:

Phosphate and tensin homologue deleted on chromosome 10

KO:

Knockout

CBS:

Cystathionine β-synthase

IL:

Interleukin

IKK:

IkB kinase

NFkB:

Nuclear factor kappa β

References

  1. Clark JM, Brancati FL, Diehl AM. The prevalence and etiology of elevated aminotransferase levels in the United States. Am J Gastroenterol. 2003;98:960–7.

    Article  CAS  PubMed  Google Scholar 

  2. Loomba R, Sanyal AJ. The global NAFLD epidemic. Nat Rev Gastroenterol Hepatol. 2013;10:686–90.

    Article  CAS  PubMed  Google Scholar 

  3. Vernon G, Baranova A, Younossi ZM. Systematic review: the epidemiology and natural history of non-alcoholic fatty liver disease and non-alcoholic steatohepatitis in adults. Aliment Pharmacol Ther. 2011;34:274–85.

    Article  CAS  PubMed  Google Scholar 

  4. Charlton MR, Burns JM, Pedersen RA, Watt KD, Heimbach JK, Dierkhising RA. Frequency and outcomes of liver transplantation for nonalcoholic steatohepatitis in the United States. Gastroenterology. 2011;141:1249–53.

    Article  PubMed  Google Scholar 

  5. Liu Y, Meyer C, Xu C, Weng H, Hellerbrand C, ten Dijke P, et al. Animal models of chronic liver diseases. Am J Physiol Gastrointest Liver Physiol. 2013;304:G449–68.

    Article  CAS  PubMed  Google Scholar 

  6. Takahashi Y, Soejima Y, Fukusato T. Animal models of nonalcoholic fatty liver disease/nonalcoholic steatohepatitis. World J Gastroenterol. 2012;18:2300–8.

    Article  PubMed Central  PubMed  Google Scholar 

  7. Kanuri G, Bergheim I. In vitro and in vivo models of non-alcoholic fatty liver disease (NAFLD). Int J Mol Sci. 2013;14:11963–80.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  8. Rizki G, Arnaboldi L, Gabrielli B, Yan J, Lee GS, Ng RK, et al. Mice fed a lipogenic methionine-choline-deficient diet develop hypermetabolism coincident with hepatic suppression of SCD-1. J Lipid Res. 2006;47:2280–90.

    Article  CAS  PubMed  Google Scholar 

  9. Mato JM, Lu SC. Role of S-adenosyl-L-methionine in liver health and injury. Hepatology. 2007;45:1306–12.

    Article  CAS  PubMed  Google Scholar 

  10. Oz HS, Chen TS, Neuman M. Methionine deficiency and hepatic injury in a dietary steatohepatitis model. Dig Dis Sci. 2008;53:767–76.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  11. Wortham M, He L, Gyamfi M, Copple BL, Wan YJ. The transition from fatty liver to NASH associates with SAMe depletion in db/db mice fed a methionine choline-deficient diet. Dig Dis Sci. 2008;53:2761–74.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  12. Caballero F, Fernandez A, Matias N, Martinez L, Fucho R, Elena M, et al. Specific contribution of methionine and choline in nutritional nonalcoholic steatohepatitis: impact on mitochondrial S-adenosyl-L-methionine and glutathione. J Biol Chem. 2010;285:18528–36.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  13. Pickens MK, Yan JS, Ng RK, Ogata H, Grenert JP, Beysen C, et al. Dietary sucrose is essential to the development of liver injury in the methionine-choline-deficient model of steatohepatitis. J Lipid Res. 2009;50:2072–82.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  14. Leclercq IA, Farrell GC, Field J, Bell DR, Gonzalez FJ, Robertson GR. CYP2E1 and CYP4A as microsomal catalysts of lipid peroxides in murine nonalcoholic steatohepatitis. J Clin Invest. 2000;105:1067–75.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  15. Machado MV, Michelotti GA, Pereira TD, Boursier J, Kruger L, Swiderska-Syn M, et al. Reduced lipoapoptosis, hedgehog pathway activation and fibrosis in caspase-2 deficient mice with non-alcoholic steatohepatitis. Gut. 2015;64(7):1148–57.

    Google Scholar 

  16. Itagaki H, Shimizu K, Morikawa S, Ogawa K, Ezaki T. Morphological and functional characterization of non-alcoholic fatty liver disease induced by a methionine-choline-deficient diet in C57BL/6 mice. Int J Clin Exp Pathol. 2013;6:2683–96.

    PubMed Central  PubMed  Google Scholar 

  17. Syn WK, Choi SS, Liaskou E, Karaca GF, Agboola KM, Oo YH, et al. Osteopontin is induced by hedgehog pathway activation and promotes fibrosis progression in nonalcoholic steatohepatitis. Hepatology. 2011;53:106–15.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  18. Mu YP, Ogawa T, Kawada N. Reversibility of fibrosis, inflammation, and endoplasmic reticulum stress in the liver of rats fed a methionine-choline-deficient diet. Lab Investig. 2010;90:245–56.

    Article  CAS  PubMed  Google Scholar 

  19. Tessitore L, Sesca E, Greco M, Pani P, Dianzani MU. Sexually differentiated response to choline in choline deficiency and ethionine intoxication. Int J Exp Pathol. 1995;76:125–9.

    PubMed Central  CAS  PubMed  Google Scholar 

  20. Kirsch R, Clarkson V, Shephard EG, Marais DA, Jaffer MA, Woodburne VE, et al. Rodent nutritional model of non-alcoholic steatohepatitis: species, strain and sex difference studies. J Gastroenterol Hepatol. 2003;18:1272–82.

    Article  PubMed  Google Scholar 

  21. Rangnekar AS, Lammert F, Igolnikov A, Green RM. Quantitative trait loci analysis of mice administered the methionine-choline deficient dietary model of experimental steatohepatitis. Liver Int. 2006;26:1000–5.

    Article  CAS  PubMed  Google Scholar 

  22. Liu R, Pan X, Whitington PF. Increased hepatic expression is a major determinant of serum alanine aminotransferase elevation in mice with nonalcoholic steatohepatitis. Liver Int. 2009;29:337–43.

    Article  CAS  PubMed  Google Scholar 

  23. Gyamfi MA, Damjanov I, French S, Wan YJ. The pathogenesis of ethanol versus methionine and choline deficient diet-induced liver injury. Biochem Pharmacol. 2008;75:981–95.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  24. Baghdasaryan A, Fickert P, Fuchsbichler A, Silbert D, Gumhold J, Horl G, et al. Role of hepatic phospholipids in development of liver injury in Mdr2 (Abcb4) knockout mice. Liver Int. 2008;28:948–58.

    Article  CAS  PubMed  Google Scholar 

  25. Francque S, Wamutu S, Chatterjee S, Van Marck E, Herman A, Ramon A, et al. Non-alcoholic steatohepatitis induces non-fibrosis-related portal hypertension associated with splanchnic vasodilation and signs of a hyperdynamic circulation in vitro and in vivo in a rat model. Liver Int. 2010;30:365–75.

    Article  CAS  PubMed  Google Scholar 

  26. Francque S, Laleman W, Verbeke L, Van Steenkiste C, Casteleyn C, Kwanten W, et al. Increased intrahepatic resistance in severe steatosis: endothelial dysfunction, vasoconstrictor overproduction and altered microvascular architecture. Lab Investig. 2012;92:1428–39.

    Article  CAS  PubMed  Google Scholar 

  27. Anstee QM, Goldin RD. Mouse models in non-alcoholic fatty liver disease and steatohepatitis research. Int J Exp Pathol. 2006;87:1–16.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  28. Machado M, Marques-Vidal P, Cortez-Pinto H. Hepatic histology in obese patients undergoing bariatric surgery. J Hepatol. 2006;45:600–6.

    Article  PubMed  Google Scholar 

  29. Tidwell HC. Effect of choline, methionine and ethionine on fat absorption. J Nutr. 1956;58:569–78.

    CAS  PubMed  Google Scholar 

  30. Jha P, Knopf A, Koefeler H, Mueller M, Lackner C, Hoefler G, et al. Role of adipose tissue in methionine-choline-deficient model of non-alcoholic steatohepatitis (NASH). Biochim Biophys Acta. 1842;2014:959–70.

    Google Scholar 

  31. Ntambi JM, Miyazaki M, Stoehr JP, Lan H, Kendziorski CM, Yandell BS, et al. Loss of stearoyl-CoA desaturase-1 function protects mice against adiposity. Proc Natl Acad Sci USA. 2002;99:11482–6.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  32. Jha P, Claudel T, Baghdasaryan A, Mueller M, Halilbasic E, Das SK, et al. Role of adipose triglyceride lipase (PNPLA2) in protection from hepatic inflammation in mouse models of steatohepatitis and endotoxemia. Hepatology. 2014;59:858–69.

    Article  CAS  PubMed  Google Scholar 

  33. Weltman MD, Farrell GC, Liddle C. Increased hepatocyte CYP2E1 expression in a rat nutritional model of hepatic steatosis with inflammation. Gastroenterology. 1996;111:1645–53.

    Article  CAS  PubMed  Google Scholar 

  34. Rinella ME, Green RM. The methionine-choline deficient dietary model of steatohepatitis does not exhibit insulin resistance. J Hepatol. 2004;40:47–51.

    Article  CAS  PubMed  Google Scholar 

  35. Horie Y, Suzuki A, Kataoka E, Sasaki T, Hamada K, Sasaki J, et al. Hepatocyte-specific Pten deficiency results in steatohepatitis and hepatocellular carcinomas. J Clin Invest. 2004;113:1774–83.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  36. Sanyal AJ, Chalasani N, Kowdley KV, McCullough A, Diehl AM, Bass NM, et al. Pioglitazone, vitamin E, or placebo for nonalcoholic steatohepatitis. N Engl J Med. 2010;362:1675–85.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  37. Lavine JE, Schwimmer JB, Van Natta ML, Molleston JP, Murray KF, Rosenthal P, et al. Effect of vitamin E or metformin for treatment of nonalcoholic fatty liver disease in children and adolescents: the TONIC randomized controlled trial. JAMA. 2011;305:1659–68.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  38. Schattenberg JM, Wang Y, Singh R, Rigoli RM, Czaja MJ. Hepatocyte CYP2E1 overexpression and steatohepatitis lead to impaired hepatic insulin signaling. J Biol Chem. 2005;280:9887–94.

    Article  CAS  PubMed  Google Scholar 

  39. Leclercq IA, Lebrun VA, Starkel P, Horsmans YJ. Intrahepatic insulin resistance in a murine model of steatohepatitis: effect of PPARgamma agonist pioglitazone. Lab Investig. 2007;87:56–65.

    Article  CAS  PubMed  Google Scholar 

  40. Tomita K, Teratani T, Suzuki T, Shimizu M, Sato H, Narimatsu K, et al. Free cholesterol accumulation in hepatic stellate cells: mechanism of liver fibrosis aggravation in nonalcoholic steatohepatitis in mice. Hepatology. 2014;59:154–69.

    Article  CAS  PubMed  Google Scholar 

  41. Kirsch R, Clarkson V, Verdonk RC, Marais AD, Shephard EG, Ryffel B, et al. Rodent nutritional model of steatohepatitis: effects of endotoxin (lipopolysaccharide) and tumor necrosis factor alpha deficiency. J Gastroenterol Hepatol. 2006;21:174–82.

    Article  CAS  PubMed  Google Scholar 

  42. Kudo H, Takahara T, Yata Y, Kawai K, Zhang W, Sugiyama T. Lipopolysaccharide triggered TNF-alpha-induced hepatocyte apoptosis in a murine non-alcoholic steatohepatitis model. J Hepatol. 2009;51:168–75.

    Article  CAS  PubMed  Google Scholar 

  43. Kirsch R, Sijtsema HP, Tlali M, Marais AD, Hall PL. Effects of iron overload in a rat nutritional model of non-alcoholic fatty liver disease. Liver Int. 2006;26:1258–67.

    Article  CAS  PubMed  Google Scholar 

  44. Syn WK, Jung Y, Omenetti A, Abdelmalek M, Guy CD, Yang L, et al. Hedgehog-mediated epithelial-to-mesenchymal transition and fibrogenic repair in nonalcoholic fatty liver disease. Gastroenterology. 2009;137:1478–88.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  45. Donnelly KL, Smith CI, Schwarzenberg SJ, Jessurun J, Boldt MD, Parks EJ. Sources of fatty acids stored in liver and secreted via lipoproteins in patients with nonalcoholic fatty liver disease. J Clin Invest. 2005;115:1343–51.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  46. Council NR. Nutrient requirements of laboratory animals. Washington, DC: The National Academies Press; 1995.

    Google Scholar 

  47. Lieber CS, Leo MA, Mak KM, Xu Y, Cao Q, Ren C, et al. Model of nonalcoholic steatohepatitis. Am J Clin Nutr. 2004;79:502–9.

    CAS  PubMed  Google Scholar 

  48. Zou Y, Li J, Lu C, Wang J, Ge J, Huang Y, et al. High-fat emulsion-induced rat model of nonalcoholic steatohepatitis. Life Sci. 2006;79:1100–7.

    Article  CAS  PubMed  Google Scholar 

  49. Omagari K, Kato S, Tsuneyama K, Inohara C, Kuroda Y, Tsukuda H, et al. Effects of a long-term high-fat diet and switching from a high-fat to low-fat, standard diet on hepatic fat accumulation in Sprague-Dawley rats. Dig Dis Sci. 2008;53:3206–12.

    Article  CAS  PubMed  Google Scholar 

  50. Romestaing C, Piquet MA, Bedu E, Rouleau V, Dautresme M, Hourmand-Ollivier I, et al. Long term highly saturated fat diet does not induce NASH in Wistar rats. Nutr Metab. 2007;4:4.

    Article  CAS  Google Scholar 

  51. Nishikawa S, Yasoshima A, Doi K, Nakayama H, Uetsuka K. Involvement of sex, strain and age factors in high fat diet-induced obesity in C57BL/6J and BALB/cA mice. Exp Anim. 2007;56:263–72.

    Article  CAS  PubMed  Google Scholar 

  52. Farrell GC, Mridha AR, Yeh MM, Arsov T, Van Rooyen DM, Brooling J, et al. Strain dependence of diet-induced NASH and liver fibrosis in obese mice is linked to diabetes and inflammatory phenotype. Liver Int. 2014;34:1084–93.

    Article  CAS  PubMed  Google Scholar 

  53. Asai A, Chou PM, Bu HF, Wang X, Rao MS, Jiang A, et al. Dissociation of hepatic insulin resistance from susceptibility of nonalcoholic fatty liver disease induced by a high-fat and high-carbohydrate diet in mice. Am J Physiol Gastrointest Liver Physiol. 2014;306:G496–504.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  54. Syn WK, Yang L, Chiang DJ, Qian Y, Jung Y, Karaca G, et al. Genetic differences in oxidative stress and inflammatory responses to diet-induced obesity do not alter liver fibrosis in mice. Liver Int. 2009;29:1262–72.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  55. Hill-Baskin AE, Markiewski MM, Buchner DA, Shao H, DeSantis D, Hsiao G, et al. Diet-induced hepatocellular carcinoma in genetically predisposed mice. Hum Mol Genet. 2009;18:2975–88.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  56. Ito M, Suzuki J, Tsujioka S, Sasaki M, Gomori A, Shirakura T, et al. Longitudinal analysis of murine steatohepatitis model induced by chronic exposure to high-fat diet. Hepatol Res. 2007;37:50–7.

    Article  CAS  PubMed  Google Scholar 

  57. Deng QG, She H, Cheng JH, French SW, Koop DR, Xiong S, et al. Steatohepatitis induced by intragastric overfeeding in mice. Hepatology. 2005;42:905–14.

    Article  CAS  PubMed  Google Scholar 

  58. Gaemers IC, Stallen JM, Kunne C, Wallner C, van Werven J, Nederveen A, et al. Lipotoxicity and steatohepatitis in an overfed mouse model for non-alcoholic fatty liver disease. Biochim Biophys Acta. 1812;2011:447–58.

    Google Scholar 

  59. Ogasawara M, Hirose A, Ono M, Aritake K, Nozaki Y, Takahashi M, et al. A novel and comprehensive mouse model of human non-alcoholic steatohepatitis with the full range of dysmetabolic and histological abnormalities induced by gold thioglucose and a high-fat diet. Liver Int. 2011;31:542–51.

    Article  CAS  PubMed  Google Scholar 

  60. Kawai D, Takaki A, Nakatsuka A, Wada J, Tamaki N, Yasunaka T, et al. Hydrogen-rich water prevents progression of nonalcoholic steatohepatitis and accompanying hepatocarcinogenesis in mice. Hepatology. 2012;56:912–21.

    Article  CAS  PubMed  Google Scholar 

  61. Yimin, Furumaki H, Matsuoka S, Sakurai T, Kohanawa M, Zhao S, et al. A novel murine model for non-alcoholic steatohepatitis developed by combination of a high-fat diet and oxidized low-density lipoprotein. Lab Invest. 2012;92:265–81.

    Article  CAS  PubMed  Google Scholar 

  62. Schneiderhan W, Schmid-Kotsas A, Zhao J, Grunert A, Nussler A, Weidenbach H, et al. Oxidized low-density lipoproteins bind to the scavenger receptor, CD36, of hepatic stellate cells and stimulate extracellular matrix synthesis. Hepatology. 2001;34:729–37.

    Article  CAS  PubMed  Google Scholar 

  63. Kang Q, Chen A. Curcumin eliminates oxidized LDL roles in activating hepatic stellate cells by suppressing gene expression of lectin-like oxidized LDL receptor-1. Lab Investig. 2009;89:1275–90.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  64. Musso G, Gambino R, De Michieli F, Cassader M, Rizzetto M, Durazzo M, et al. Dietary habits and their relations to insulin resistance and postprandial lipemia in nonalcoholic steatohepatitis. Hepatology. 2003;37:909–16.

    Article  CAS  PubMed  Google Scholar 

  65. Cortez-Pinto H, Jesus L, Barros H, Lopes C, Moura MC, Camilo ME. How different is the dietary pattern in non-alcoholic steatohepatitis patients? Clin Nutr. 2006;25:816–23.

    Article  CAS  PubMed  Google Scholar 

  66. Yasutake K, Nakamuta M, Shima Y, Ohyama A, Masuda K, Haruta N, et al. Nutritional investigation of non-obese patients with non-alcoholic fatty liver disease: the significance of dietary cholesterol. Scand J Gastroenterol. 2009;44:471–7.

    Article  CAS  PubMed  Google Scholar 

  67. Abid A, Taha O, Nseir W, Farah R, Grosovski M, Assy N. Soft drink consumption is associated with fatty liver disease independent of metabolic syndrome. J Hepatol. 2009;51:918–24.

    Article  CAS  PubMed  Google Scholar 

  68. Abdelmalek MF, Suzuki A, Guy C, Unalp-Arida A, Colvin R, Johnson RJ, et al. Increased fructose consumption is associated with fibrosis severity in patients with nonalcoholic fatty liver disease. Hepatology. 2010;51:1961–71.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  69. Tetri LH, Basaranoglu M, Brunt EM, Yerian LM, Neuschwander-Tetri BA. Severe NAFLD with hepatic necroinflammatory changes in mice fed trans fats and a high-fructose corn syrup equivalent. Am J Physiol Gastrointest Liver Physiol. 2008;295:G987–95.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  70. Kohli R, Kirby M, Xanthakos SA, Softic S, Feldstein AE, Saxena V, et al. High-fructose, medium chain trans fat diet induces liver fibrosis and elevates plasma coenzyme Q9 in a novel murine model of obesity and nonalcoholic steatohepatitis. Hepatology. 2010;52:934–44.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  71. Clapper JR, Hendricks MD, Gu G, Wittmer C, Dolman CS, Herich J, et al. Diet-induced mouse model of fatty liver disease and nonalcoholic steatohepatitis reflecting clinical disease progression and methods of assessment. Am J Physiol Gastrointest Liver Physiol. 2013;305:G483–95.

    Article  CAS  PubMed  Google Scholar 

  72. Charlton M, Krishnan A, Viker K, Sanderson S, Cazanave S, McConico A, et al. Fast food diet mouse: novel small animal model of NASH with ballooning, progressive fibrosis, and high physiological fidelity to the human condition. Am J Physiol Gastrointest Liver Physiol. 2011;301:G825–34.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  73. Ginsberg HN. Is the slippery slope from steatosis to steatohepatitis paved with triglyceride or cholesterol? Cell Metab. 2006;4:179–81.

    Article  CAS  PubMed  Google Scholar 

  74. Mells JE, Fu PP, Sharma S, Olson D, Cheng L, Handy JA, et al. Glp-1 analog, liraglutide, ameliorates hepatic steatosis and cardiac hypertrophy in C57BL/6J mice fed a Western diet. Am J Physiol Gastrointest Liver Physiol. 2012;302:G225–35.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  75. Dorn C, Engelmann JC, Saugspier M, Koch A, Hartmann A, Muller M, et al. Increased expression of c-Jun in nonalcoholic fatty liver disease. Lab Investig. 2014;94:394–408.

    Article  CAS  PubMed  Google Scholar 

  76. Cong WN, Tao RY, Tian JY, Liu GT, Ye F. The establishment of a novel non-alcoholic steatohepatitis model accompanied with obesity and insulin resistance in mice. Life Sci. 2008;82:983–90.

    Article  CAS  PubMed  Google Scholar 

  77. Kita Y, Takamura T, Misu H, Ota T, Kurita S, Takeshita Y, et al. Metformin prevents and reverses inflammation in a non-diabetic mouse model of nonalcoholic steatohepatitis. PLoS One. 2012;7, e43056.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  78. Matsuzawa N, Takamura T, Kurita S, Misu H, Ota T, Ando H, et al. Lipid-induced oxidative stress causes steatohepatitis in mice fed an atherogenic diet. Hepatology. 2007;46:1392–403.

    Article  CAS  PubMed  Google Scholar 

  79. Betancourt AM, King AL, Fetterman JL, Millender-Swain T, Finley RD, Oliva CR, et al. Mitochondrial-nuclear genome interactions in nonalcoholic fatty liver disease in mice. Biochem J. 2014;461:223–32.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  80. Vemuri M, Kelley DS, Mackey BE, Rasooly R, Bartolini G. Docosahexaenoic acid (DHA) but not eicosapentaenoic acid (EPA) prevents trans-10, cis-12 conjugated linoleic acid (CLA)-induced insulin resistance in mice. Metab Syndr Relat Disord. 2007;5:315–22.

    Article  CAS  PubMed  Google Scholar 

  81. Fedor DM, Adkins Y, Mackey BE, Kelley DS. Docosahexaenoic acid prevents trans-10, cis-12-conjugated linoleic acid-induced nonalcoholic fatty liver disease in mice by altering expression of hepatic genes regulating fatty acid synthesis and oxidation. Metab Syndr Relat Disord. 2012;10:175–80.

    Article  CAS  PubMed  Google Scholar 

  82. Adkins Y, Schie IW, Fedor D, Reddy A, Nguyen S, Zhou P, et al. A novel mouse model of nonalcoholic steatohepatitis with significant insulin resistance. Lab Investig. 2013;93:1313–22.

    Article  CAS  PubMed  Google Scholar 

  83. Fujita K, Nozaki Y, Yoneda M, Wada K, Takahashi H, Kirikoshi H, et al. Nitric oxide plays a crucial role in the development/progression of nonalcoholic steatohepatitis in the choline-deficient, l-amino acid-defined diet-fed rat model. Alcohol Clin Exp Res. 2010;34 Suppl 1:S18–24.

    Article  CAS  PubMed  Google Scholar 

  84. Nakae D, Yoshiji H, Mizumoto Y, Horiguchi K, Shiraiwa K, Tamura K, et al. High incidence of hepatocellular carcinomas induced by a choline deficient L-amino acid defined diet in rats. Cancer Res. 1992;52:5042–5.

    CAS  PubMed  Google Scholar 

  85. de Lima VM, Oliveira CP, Alves VA, Chammas MC, Oliveira EP, Stefano JT, et al. A rodent model of NASH with cirrhosis, oval cell proliferation and hepatocellular carcinoma. J Hepatol. 2008;49:1055–61.

    Article  PubMed  CAS  Google Scholar 

  86. Matsumoto M, Hada N, Sakamaki Y, Uno A, Shiga T, Tanaka C, et al. An improved mouse model that rapidly develops fibrosis in non-alcoholic steatohepatitis. Int J Exp Pathol. 2013;94:93–103.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  87. Ingalls AM, Dickie MM, Snell GD. Obese, a new mutation in the house mouse. J Hered. 1950;41:317–8.

    CAS  PubMed  Google Scholar 

  88. Zhang Y, Proenca R, Maffei M, Barone M, Leopold L, Friedman JM. Positional cloning of the mouse obese gene and its human homologue. Nature. 1994;372:425–32.

    Article  CAS  PubMed  Google Scholar 

  89. Lindstrom P. The physiology of obese-hyperglycemic mice [ob/ob mice]. Sci World J. 2007;7:666–85.

    Article  CAS  Google Scholar 

  90. Fellmann L, Nascimento AR, Tibirica E, Bousquet P. Murine models for pharmacological studies of the metabolic syndrome. Pharmacol Ther. 2013;137:331–40.

    Article  CAS  PubMed  Google Scholar 

  91. Diehl AM. Lessons from animal models of NASH. Hepatol Res. 2005;33:138–44.

    Article  CAS  PubMed  Google Scholar 

  92. Liang CP, Tall AR. Transcriptional profiling reveals global defects in energy metabolism, lipoprotein, and bile acid synthesis and transport with reversal by leptin treatment in ob/ob mouse liver. J Biol Chem. 2001;276:49066–76.

    Article  CAS  PubMed  Google Scholar 

  93. Li Z, Yang S, Lin H, Huang J, Watkins PA, Moser AB, et al. Probiotics and antibodies to TNF inhibit inflammatory activity and improve nonalcoholic fatty liver disease. Hepatology. 2003;37:343–50.

    Article  CAS  PubMed  Google Scholar 

  94. Trak-Smayra V, Paradis V, Massart J, Nasser S, Jebara V, Fromenty B. Pathology of the liver in obese and diabetic ob/ob and db/db mice fed a standard or high-calorie diet. Int J Exp Pathol. 2011;92:413–21.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  95. Trevaskis JL, Griffin PS, Wittmer C, Neuschwander-Tetri BA, Brunt EM, Dolman CS, et al. Glucagon-like peptide-1 receptor agonism improves metabolic, biochemical, and histopathological indices of nonalcoholic steatohepatitis in mice. Am J Physiol Gastrointest Liver Physiol. 2012;302:G762–72.

    Article  CAS  PubMed  Google Scholar 

  96. Sahai A, Malladi P, Pan X, Paul R, Melin-Aldana H, Green RM, et al. Obese and diabetic db/db mice develop marked liver fibrosis in a model of nonalcoholic steatohepatitis: role of short-form leptin receptors and osteopontin. Am J Physiol Gastrointest Liver Physiol. 2004;287:G1035–43.

    Article  CAS  PubMed  Google Scholar 

  97. de Oliveira CP, Stefano JT, de Lima VM, de Sa SV, Simplicio FI, de Mello ES, et al. Hepatic gene expression profile associated with non-alcoholic steatohepatitis protection by S-nitroso-N-acetylcysteine in ob/ob mice. J Hepatol. 2006;45:725–33.

    Article  PubMed  CAS  Google Scholar 

  98. Yang SQ, Lin HZ, Lane MD, Clemens M, Diehl AM. Obesity increases sensitivity to endotoxin liver injury: implications for the pathogenesis of steatohepatitis. Proc Natl Acad Sci USA. 1997;94:2557–62.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  99. Leclercq IA, Farrell GC, Schriemer R, Robertson GR. Leptin is essential for the hepatic fibrogenic response to chronic liver injury. J Hepatol. 2002;37:206–13.

    Article  CAS  PubMed  Google Scholar 

  100. Potter JJ, Rennie-Tankesley L, Mezey E. Influence of leptin in the development of hepatic fibrosis produced in mice by Schistosoma mansoni infection and by chronic carbon tetrachloride administration. J Hepatol. 2003;38:281–8.

    Article  CAS  PubMed  Google Scholar 

  101. Li Z, Oben JA, Yang S, Lin H, Stafford EA, Soloski MJ, et al. Norepinephrine regulates hepatic innate immune system in leptin-deficient mice with nonalcoholic steatohepatitis. Hepatology. 2004;40:434–41.

    Article  CAS  PubMed  Google Scholar 

  102. Oben JA, Roskams T, Yang S, Lin H, Sinelli N, Li Z, et al. Norepinephrine induces hepatic fibrogenesis in leptin deficient ob/ob mice. Biochem Biophys Res Commun. 2003;308:284–92.

    Article  CAS  PubMed  Google Scholar 

  103. Hummel KP, Dickie MM, Coleman DL. Diabetes, a new mutation in the mouse. Science. 1966;153:1127–8.

    Article  CAS  PubMed  Google Scholar 

  104. Chen H, Charlat O, Tartaglia LA, Woolf EA, Weng X, Ellis SJ, et al. Evidence that the diabetes gene encodes the leptin receptor: identification of a mutation in the leptin receptor gene in db/db mice. Cell. 1996;84:491–5.

    Article  CAS  PubMed  Google Scholar 

  105. Tesch GH, Lim AK. Recent insights into diabetic renal injury from the db/db mouse model of type 2 diabetic nephropathy. Am J Physiol Renal Physiol. 2011;300:F301–10.

    Article  CAS  PubMed  Google Scholar 

  106. Choi SS, Syn WK, Karaca GF, Omenetti A, Moylan CA, Witek RP, et al. Leptin promotes the myofibroblastic phenotype in hepatic stellate cells by activating the hedgehog pathway. J Biol Chem. 2010;285:36551–60.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  107. Zucker LM. Hereditary obesity in the rat associated with hyperlipemia. Ann N Y Acad Sci. 1965;131:447–58.

    Article  CAS  PubMed  Google Scholar 

  108. Godbole V, York DA. Lipogenesis in situ in the genetically obese Zucker fatty rat (fa/fa): role of hyperphagia and hyperinsulinaemia. Diabetologia. 1978;14:191–7.

    Article  CAS  PubMed  Google Scholar 

  109. Carmiel-Haggai M, Cederbaum AI, Nieto N. A high-fat diet leads to the progression of non-alcoholic fatty liver disease in obese rats. FASEB J. 2005;19:136–8.

    CAS  PubMed  Google Scholar 

  110. Fukunishi S, Nishio H, Fukuda A, Takeshita A, Hanafusa T, Higuchi K, et al. Long-term feeding of a synthetic diet rich in disaccharides induces hepatic fibrosis in nonalcoholic fatty liver disease in Zucker rats. Int J Mol Med. 2010;25:187–93.

    CAS  PubMed  Google Scholar 

  111. Fukunishi S, Nishio H, Fukuda A, Takeshita A, Hanafusa T, Higuchi K, et al. Development of fibrosis in nonalcoholic steatosis through combination of a synthetic diet rich in disaccharide and low-dose lipopolysaccharides in the livers of Zucker (fa/fa) rats. J Clin Biochem Nutr. 2009;45:322–8.

    Article  PubMed Central  PubMed  Google Scholar 

  112. Bultman SJ, Michaud EJ, Woychik RP. Molecular characterization of the mouse agouti locus. Cell. 1992;71:1195–204.

    Article  CAS  PubMed  Google Scholar 

  113. Moussa NM, Claycombe KJ. The yellow mouse obesity syndrome and mechanisms of agouti-induced obesity. Obes Res. 1999;7:506–14.

    Article  CAS  PubMed  Google Scholar 

  114. Shimizu H, Inoue K, Mori M. The leptin-dependent and -independent melanocortin signaling system: regulation of feeding and energy expenditure. J Endocrinol. 2007;193:1–9.

    Article  CAS  PubMed  Google Scholar 

  115. Claycombe KJ, Xue BZ, Mynatt RL, Zemel MB, Moustaid-Moussa N. Regulation of leptin by agouti. Physiol Genomics. 2000;2:101–5.

    CAS  PubMed  Google Scholar 

  116. Okumura K, Ikejima K, Kon K, Abe W, Yamashina S, Enomoto N, et al. Exacerbation of dietary steatohepatitis and fibrosis in obese, diabetic KK-A(y) mice. Hepatol Res. 2006;36:217–28.

    Article  CAS  PubMed  Google Scholar 

  117. Albarado DC, McClaine J, Stephens JM, Mynatt RL, Ye J, Bannon AW, et al. Impaired coordination of nutrient intake and substrate oxidation in melanocortin-4 receptor knockout mice. Endocrinology. 2004;145:243–52.

    Article  CAS  PubMed  Google Scholar 

  118. Itoh M, Suganami T, Nakagawa N, Tanaka M, Yamamoto Y, Kamei Y, et al. Melanocortin 4 receptor-deficient mice as a novel mouse model of nonalcoholic steatohepatitis. Am J Pathol. 2011;179:2454–63.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  119. Arsov T, Silva DG, O’Bryan MK, Sainsbury A, Lee NJ, Kennedy C, et al. Fat aussie–a new Alstrom syndrome mouse showing a critical role for ALMS1 in obesity, diabetes, and spermatogenesis. Mol Endocrinol. 2006;20:1610–22.

    Article  CAS  PubMed  Google Scholar 

  120. Arsov T, Larter CZ, Nolan CJ, Petrovsky N, Goodnow CC, Teoh NC, et al. Adaptive failure to high-fat diet characterizes steatohepatitis in Alms1 mutant mice. Biochem Biophys Res Commun. 2006;342:1152–9.

    Article  CAS  PubMed  Google Scholar 

  121. Larter CZ, Yeh MM, Van Rooyen DM, Teoh NC, Brooling J, Hou JY, et al. Roles of adipose restriction and metabolic factors in progression of steatosis to steatohepatitis in obese, diabetic mice. J Gastroenterol Hepatol. 2009;24:1658–68.

    Article  CAS  PubMed  Google Scholar 

  122. Van Rooyen DM, Larter CZ, Haigh WG, Yeh MM, Ioannou G, Kuver R, et al. Hepatic free cholesterol accumulates in obese, diabetic mice and causes nonalcoholic steatohepatitis. Gastroenterology 2011;141:1393–403, 403 e1–5.

    Google Scholar 

  123. Takiguchi S, Takata Y, Funakoshi A, Miyasaka K, Kataoka K, Fujimura Y, et al. Disrupted cholecystokinin type-A receptor (CCKAR) gene in OLETF rats. Gene. 1997;197:169–75.

    Article  CAS  PubMed  Google Scholar 

  124. Song YS, Fang CH, So BI, Park JY, Lee Y, Shin JH, et al. Time course of the development of nonalcoholic fatty liver disease in the Otsuka long-evans Tokushima fatty rat. Gastroenterol Res Pract. 2013;2013:342648.

    Article  PubMed Central  PubMed  Google Scholar 

  125. Ota T, Takamura T, Kurita S, Matsuzawa N, Kita Y, Uno M, et al. Insulin resistance accelerates a dietary rat model of nonalcoholic steatohepatitis. Gastroenterology. 2007;132:282–93.

    Article  CAS  PubMed  Google Scholar 

  126. Uno M, Kurita S, Misu H, Ando H, Ota T, Matsuzawa-Nagata N, et al. Tranilast, an antifibrogenic agent, ameliorates a dietary rat model of nonalcoholic steatohepatitis. Hepatology. 2008;48:109–18.

    Article  CAS  PubMed  Google Scholar 

  127. Shimano H, Horton JD, Hammer RE, Shimomura I, Brown MS, Goldstein JL. Overproduction of cholesterol and fatty acids causes massive liver enlargement in transgenic mice expressing truncated SREBP-1a. J Clin Invest. 1996;98:1575–84.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  128. Shimomura I, Shimano H, Korn BS, Bashmakov Y, Horton JD. Nuclear sterol regulatory element-binding proteins activate genes responsible for the entire program of unsaturated fatty acid biosynthesis in transgenic mouse liver. J Biol Chem. 1998;273:35299–306.

    Article  CAS  PubMed  Google Scholar 

  129. Shimomura I, Hammer RE, Richardson JA, Ikemoto S, Bashmakov Y, Goldstein JL, et al. Insulin resistance and diabetes mellitus in transgenic mice expressing nuclear SREBP-1c in adipose tissue: model for congenital generalized lipodystrophy. Genes Dev. 1998;12:3182–94.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  130. Nakayama H, Otabe S, Ueno T, Hirota N, Yuan X, Fukutani T, et al. Transgenic mice expressing nuclear sterol regulatory element-binding protein 1c in adipose tissue exhibit liver histology similar to nonalcoholic steatohepatitis. Metab Clin Exp. 2007;56:470–5.

    Article  CAS  PubMed  Google Scholar 

  131. Nagarajan P, Mahesh Kumar MJ, Venkatesan R, Majundar SS, Juyal RC. Genetically modified mouse models for the study of nonalcoholic fatty liver disease. World J Gastroenterol. 2012;18:1141–53.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  132. Ross SR, Graves RA, Spiegelman BM. Targeted expression of a toxin gene to adipose tissue: transgenic mice resistant to obesity. Genes Dev. 1993;7:1318–24.

    Article  CAS  PubMed  Google Scholar 

  133. Moitra J, Mason MM, Olive M, Krylov D, Gavrilova O, Marcus-Samuels B, et al. Life without white fat: a transgenic mouse. Genes Dev. 1998;12:3168–81.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  134. Goudriaan JR, Dahlmans VE, Teusink B, Ouwens DM, Febbraio M, Maassen JA, et al. CD36 deficiency increases insulin sensitivity in muscle, but induces insulin resistance in the liver in mice. J Lipid Res. 2003;44:2270–7.

    Article  CAS  PubMed  Google Scholar 

  135. Cook WS, Jain S, Jia Y, Cao WQ, Yeldandi AV, Reddy JK, et al. Peroxisome proliferator-activated receptor alpha-responsive genes induced in the newborn but not prenatal liver of peroxisomal fatty acyl-CoA oxidase null mice. Exp Cell Res. 2001;268:70–6.

    Article  CAS  PubMed  Google Scholar 

  136. Huang J, Viswakarma N, Yu S, Jia Y, Bai L, Vluggens A, et al. Progressive endoplasmic reticulum stress contributes to hepatocarcinogenesis in fatty acyl-CoA oxidase 1-deficient mice. Am J Pathol. 2011;179:703–13.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  137. Svegliati-Baroni G, Candelaresi C, Saccomanno S, Ferretti G, Bachetti T, Marzioni M, et al. A model of insulin resistance and nonalcoholic steatohepatitis in rats: role of peroxisome proliferator-activated receptor-alpha and n-3 polyunsaturated fatty acid treatment on liver injury. Am J Pathol. 2006;169:846–60.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  138. Kersten S, Seydoux J, Peters JM, Gonzalez FJ, Desvergne B, Wahli W. Peroxisome proliferator-activated receptor alpha mediates the adaptive response to fasting. J Clin Invest. 1999;103:1489–98.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  139. Ibdah JA, Paul H, Zhao Y, Binford S, Salleng K, Cline M, et al. Lack of mitochondrial trifunctional protein in mice causes neonatal hypoglycemia and sudden death. J Clin Invest. 2001;107:1403–9.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  140. Ibdah JA, Perlegas P, Zhao Y, Angdisen J, Borgerink H, Shadoan MK, et al. Mice heterozygous for a defect in mitochondrial trifunctional protein develop hepatic steatosis and insulin resistance. Gastroenterology. 2005;128:1381–90.

    Article  CAS  PubMed  Google Scholar 

  141. Stiles B, Wang Y, Stahl A, Bassilian S, Lee WP, Kim YJ, et al. Liver-specific deletion of negative regulator Pten results in fatty liver and insulin hypersensitivity [corrected]. Proc Natl Acad Sci USA. 2004;101:2082–7.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  142. Sato W, Horie Y, Kataoka E, Ohshima S, Dohmen T, Iizuka M, et al. Hepatic gene expression in hepatocyte-specific Pten deficient mice showing steatohepatitis without ethanol challenge. Hepatol Res. 2006;34:256–65.

    Article  CAS  PubMed  Google Scholar 

  143. Lu SC, Alvarez L, Huang ZZ, Chen L, An W, Corrales FJ, et al. Methionine adenosyltransferase 1A knockout mice are predisposed to liver injury and exhibit increased expression of genes involved in proliferation. Proc Natl Acad Sci USA. 2001;98:5560–5.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  144. Martinez-Chantar ML, Corrales FJ, Martinez-Cruz LA, Garcia-Trevijano ER, Huang ZZ, Chen L, et al. Spontaneous oxidative stress and liver tumors in mice lacking methionine adenosyltransferase 1A. FASEB J. 2002;16:1292–4.

    CAS  PubMed  Google Scholar 

  145. Robert K, Nehme J, Bourdon E, Pivert G, Friguet B, Delcayre C, et al. Cystathionine beta synthase deficiency promotes oxidative stress, fibrosis, and steatosis in mice liver. Gastroenterology. 2005;128:1405–15.

    Article  CAS  PubMed  Google Scholar 

  146. Hamelet J, Demuth K, Paul JL, Delabar JM, Janel N. Hyperhomocysteinemia due to cystathionine beta synthase deficiency induces dysregulation of genes involved in hepatic lipid homeostasis in mice. J Hepatol. 2007;46:151–9.

    Article  CAS  PubMed  Google Scholar 

  147. Genc H, Dogru T, Kara M, Tapan S, Ercin CN, Acikel C, et al. Association of plasma visfatin with hepatic and systemic inflammation in nonalcoholic fatty liver disease. Ann Hepatol. 2013;12:548–55.

    PubMed  Google Scholar 

  148. Matthews VB, Allen TL, Risis S, Chan MH, Henstridge DC, Watson N, et al. Interleukin-6-deficient mice develop hepatic inflammation and systemic insulin resistance. Diabetologia. 2010;53:2431–41.

    Article  CAS  PubMed  Google Scholar 

  149. Miller AM, Wang H, Bertola A, Park O, Horiguchi N, Ki SH, et al. Inflammation-associated interleukin-6/signal transducer and activator of transcription 3 activation ameliorates alcoholic and nonalcoholic fatty liver diseases in interleukin-10-deficient mice. Hepatology. 2011;54:846–56.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  150. Mauer J, Chaurasia B, Goldau J, Vogt MC, Ruud J, Nguyen KD, et al. Signaling by IL-6 promotes alternative activation of macrophages to limit endotoxemia and obesity-associated resistance to insulin. Nat Immunol. 2014;15:423–30.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  151. Luedde T, Beraza N, Kotsikoris V, van Loo G, Nenci A, De Vos R, et al. Deletion of NEMO/IKKgamma in liver parenchymal cells causes steatohepatitis and hepatocellular carcinoma. Cancer Cell. 2007;11:119–32.

    Article  CAS  PubMed  Google Scholar 

  152. Beraza N, Ofner-Ziegenfuss L, Ehedego H, Boekschoten M, Bischoff SC, Mueller M, et al. Nor-ursodeoxycholic acid reverses hepatocyte-specific nemo-dependent steatohepatitis. Gut. 2011;60:387–96.

    Article  CAS  PubMed  Google Scholar 

  153. Chan J, Mahaney MC, Kushwaha RS, VandeBerg JF, VandeBerg JL. ABCB4 mediates diet-induced hypercholesterolemia in laboratory opossums. J Lipid Res. 2010;51:2922–8.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  154. Chan J, Sharkey FE, Kushwaha RS, VandeBerg JF, VandeBerg JL. Steatohepatitis in laboratory opossums exhibiting a high lipemic response to dietary cholesterol and fat. Am J Physiol Gastrointest Liver Physiol. 2012;303:G12–9.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  155. Dyson MC, Alloosh M, Vuchetich JP, Mokelke EA, Sturek M. Components of metabolic syndrome and coronary artery disease in female Ossabaw swine fed excess atherogenic diet. Comp Med. 2006;56:35–45.

    CAS  PubMed  Google Scholar 

  156. Lee L, Alloosh M, Saxena R, Van Alstine W, Watkins BA, Klaunig JE, et al. Nutritional model of steatohepatitis and metabolic syndrome in the Ossabaw miniature swine. Hepatology. 2009;50:56–67.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  157. Asaoka Y, Terai S, Sakaida I, Nishina H. The expanding role of fish models in understanding non-alcoholic fatty liver disease. Dis Models Mech. 2013;6:905–14.

    Article  CAS  Google Scholar 

  158. Matsumoto T, Terai S, Oishi T, Kuwashiro S, Fujisawa K, Yamamoto N, et al. Medaka as a model for human nonalcoholic steatohepatitis. Dis Models Mech. 2010;3:431–40.

    Article  CAS  Google Scholar 

  159. Kuwashiro S, Terai S, Oishi T, Fujisawa K, Matsumoto T, Nishina H, et al. Telmisartan improves nonalcoholic steatohepatitis in medaka (Oryzias latipes) by reducing macrophage infiltration and fat accumulation. Cell Tissue Res. 2011;344:125–34.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  160. Oishi T, Terai S, Kuwashiro S, Fujisawa K, Matsumoto T, Nishina H, et al. Ezetimibe reduces fatty acid quantity in liver and decreased inflammatory cell infiltration and improved NASH in medaka model. Biochem Biophys Res Commun. 2012;422:22–7.

    Article  CAS  PubMed  Google Scholar 

  161. Oka T, Nishimura Y, Zang L, Hirano M, Shimada Y, Wang Z, et al. Diet-induced obesity in zebrafish shares common pathophysiological pathways with mammalian obesity. BMC Physiol. 2010;10:21.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  162. Sadler KC, Amsterdam A, Soroka C, Boyer J, Hopkins N. A genetic screen in zebrafish identifies the mutants vps18, nf2 and foie gras as models of liver disease. Development. 2005;132:3561–72.

    Article  CAS  PubMed  Google Scholar 

  163. Cinaroglu A, Gao C, Imrie D, Sadler KC. Activating transcription factor 6 plays protective and pathological roles in steatosis due to endoplasmic reticulum stress in zebrafish. Hepatology. 2011;54:495–508.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  164. Matthews RP, Lorent K, Manoral-Mobias R, Huang Y, Gong W, Murray IV, et al. TNFalpha-dependent hepatic steatosis and liver degeneration caused by mutation of zebrafish S-adenosylhomocysteine hydrolase. Development. 2009;136:865–75.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  165. Thakur PC, Stuckenholz C, Rivera MR, Davison JM, Yao JK, Amsterdam A, et al. Lack of de novo phosphatidylinositol synthesis leads to endoplasmic reticulum stress and hepatic steatosis in cdipt-deficient zebrafish. Hepatology. 2011;54:452–62.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  166. Miyake A, Higashijima S, Kobayashi D, Narita T, Jindo T, Setiamarga DH, et al. Mutation in the abcb7 gene causes abnormal iron and fatty acid metabolism in developing medaka fish. Develop Growth Differ. 2008;50:703–16.

    Article  CAS  Google Scholar 

  167. Her GM, Hsu CC, Hong JR, Lai CY, Hsu MC, Pang HW, et al. Overexpression of gankyrin induces liver steatosis in zebrafish (Danio rerio). Biochim Biophys Acta. 1811;2011:536–48.

    Google Scholar 

  168. Her GM, Pai WY, Lai CY, Hsieh YW, Pang HW. Ubiquitous transcription factor YY1 promotes zebrafish liver steatosis and lipotoxicity by inhibiting CHOP-10 expression. Biochim Biophys Acta. 1831;2013:1037–51.

    Google Scholar 

  169. Pai WY, Hsu CC, Lai CY, Chang TZ, Tsai YL, Her GM. Cannabinoid receptor 1 promotes hepatic lipid accumulation and lipotoxicity through the induction of SREBP-1c expression in zebrafish. Transgenic Res. 2013;22:823–38.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anna Mae Diehl .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Machado, M.L.V.M., Diehl, A.M. (2016). Animal Models of Nonalcoholic Fatty Liver Disease. In: Chalasani, N., Szabo, G. (eds) Alcoholic and Non-Alcoholic Fatty Liver Disease. Springer, Cham. https://doi.org/10.1007/978-3-319-20538-0_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-20538-0_6

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-20537-3

  • Online ISBN: 978-3-319-20538-0

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics