Skip to main content

Formal Logic Definitions for Interchange Languages

  • Conference paper
  • First Online:
Intelligent Computer Mathematics (CICM 2015)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 9150))

Included in the following conference series:

Abstract

System integration often requires standardized interchange languages, via which systems can exchange mathematical knowledge. Major examples are the MathML-based markup languages and TPTP. However, these languages standardize only the syntax of the exchanged knowledge, which is insufficient when the involved logics are complex or numerous. Logical frameworks, on the other hand, allow representing the logics themselves (and are thus aware of the semantics), but they abstract from the concrete syntax.

Maybe surprisingly, until recently, state-of-the-art logical frameworks were not quite able to adequately represent logics commonly used in formal systems. Using a recent extension of the logical framework LF, we show how to give concise formal definitions of the logics used in TPTP. We can also formally define translations and combinations between the various TPTP logics. This allows us to build semantics-aware tool support such as type-checking TPTP content.

While our presentation focuses on the current TPTP logics, our approach can be easily extended to other logics and interchange languages. In particular, our logic representations can be used with both TPTP and MathML. Thus, a single definition of the semantics can be used with either interchange syntax.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Ausbrooks, R., Buswell, S., Carlisle, D., Dalmas, S., Devitt, S., Diaz, A., Froumentin, M., Hunter, R., Ion, P., Kohlhase, M., Miner, R., Poppelier, N., Smith, B., Soiffer, N., Sutor, R., Watt, S.: Mathematical Markup Language (MathML) Version 2.0 (2nd edn.) (2003). See http://www.w3.org/TR/MathML2

  2. Benzmüller, C.E., Rabe, F., Sutcliffe, G.: THF0 – the core of the TPTP language for higher-order logic. In: Armando, A., Baumgartner, P., Dowek, G. (eds.) IJCAR 2008. LNCS (LNAI), vol. 5195, pp. 491–506. Springer, Heidelberg (2008)

    Chapter  Google Scholar 

  3. Blanchette, J.C., Paskevich, A.: TFF1: the TPTP typed first-order form with rank-1 polymorphism. In: Bonacina, M.P. (ed.) CADE 2013. LNCS, vol. 7898, pp. 414–420. Springer, Heidelberg (2013)

    Chapter  Google Scholar 

  4. Buswell, S., Caprotti, O., Carlisle, D., Dewar, M., Gaetano, M., Kohlhase, M.: The Open Math Standard, Version 2.0. Technical report, The Open Math Society (2004). See http://www.openmath.org/standard/om20

  5. Church, A.: A formulation of the simple theory of types. J. Symbolic Logic 5(1), 56–68 (1940)

    Article  MathSciNet  MATH  Google Scholar 

  6. Farmer, W., Guttman, J., Thayer, F.: Little theories. In: Kapur, D. (ed.) Conference on Automated Deduction, pp. 467–581. Saratoga Spings, NY (1992)

    Google Scholar 

  7. Gordon, M., Pitts, A.: The HOL logic. In: Gordon, M., Melham, T. (eds.) Introduction to HOL, Part III, pp. 191–232. Cambridge University Press, New York (1993)

    Google Scholar 

  8. Harper, R., Honsell, F., Plotkin, G.: A framework for defining logics. J. Assoc. Comput. Mach. 40(1), 143–184 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  9. Harper, R., Sannella, D., Tarlecki, A.: Structured presentations and logic representations. Ann. Pure Appl. Logic 67, 113–160 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  10. Horozal, F.: A Framework for Defining Declarative Languages. Ph.D. thesis. Jacobs University Bremen (2014)

    Google Scholar 

  11. Horozal, F., Kohlhase, M., Rabe, F.: Extending MKM formats at the statement level. In: Campbell, J.A., Jeuring, J., Carette, J., Dos Reis, G., Sojka, P., Wenzel, M., Sorge, V. (eds.) CICM 2012. LNCS, vol. 7362, pp. 65–80. Springer, Heidelberg (2012)

    Chapter  Google Scholar 

  12. Horozal, F., Rabe, F., Kohlhase, M.: Flexary operators for formalized mathematics. In: Watt, S.M., Davenport, J.H., Sexton, A.P., Sojka, P., Urban, J. (eds.) CICM 2014. LNCS, vol. 8543, pp. 312–327. Springer, Heidelberg (2014)

    Chapter  Google Scholar 

  13. Kohlhase, M.: OMDoc: An Open Markup Format for Mathematical Documents (Version 1.2). Lecture Notes in Artificial Intelligence, vol. 4180. Springer, Heidelberg (2006)

    Book  Google Scholar 

  14. Kohlhase, M., Mossakowski, T., Rabe, F.: The LATIN Project (2009). see https://trac.omdoc.org/LATIN/

  15. Kotelnikov, E., Kovacs, L., Voronkov, A.: A first class boolean sort in first-order theorem proving and TPTP. In: Kerber, M., Carette, J., Kaliszyk, C., Rabe, F., Sorge, V. (eds.) Intelligent Computer Mathematics. Springer, Stockholm (2015)

    Google Scholar 

  16. Paulson, L.: Isabelle: A Generic Theorem Prover. Lecture Notes in Computer Science, vol. 828. Springer, Heidelberg (1994)

    Book  MATH  Google Scholar 

  17. Pfenning, F.: Logical frameworks. In: Robinson, J., Voronkov, A. (eds.) Handbook of Automated Reasoning, pp. 1063–1147. Elsevier, The Netherlands (2001)

    Chapter  Google Scholar 

  18. Pfenning, F., Schürmann, C.: System description: Twelf - a meta-logical framework for deductive systems. In: Ganzinger, H. (ed.) CADE 1999. LNCS (LNAI), vol. 1632, pp. 202–206. Springer, Heidelberg (1999)

    Chapter  Google Scholar 

  19. Rabe, F.: The MMT API: a generic MKM system. In: Carette, J., Aspinall, D., Lange, C., Sojka, P., Windsteiger, W. (eds.) CICM 2013. LNCS, vol. 7961, pp. 339–343. Springer, Heidelberg (2013)

    Chapter  Google Scholar 

  20. Rabe, F., Kohlhase, M.: A scalable module system. Inf. Comput. 230(1), 1–54 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  21. Sutcliffe, G.: The TPTP problem library and associated infrastructure. The FOF and CNF parts, v3.5.0. J. Autom. Reasoning 43(4), 337–362 (2009)

    Article  MATH  Google Scholar 

  22. Sutcliffe, G., Schulz, S., Claessen, K., Baumgartner, P.: The TPTP typed first-order form with arithmetic. In: Bjørner, N., Voronkov, A. (eds.) LPAR-18 2012. LNCS, vol. 7180, pp. 406–419. Springer, Heidelberg (2012)

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fulya Horozal .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this paper

Cite this paper

Horozal, F., Rabe, F. (2015). Formal Logic Definitions for Interchange Languages. In: Kerber, M., Carette, J., Kaliszyk, C., Rabe, F., Sorge, V. (eds) Intelligent Computer Mathematics. CICM 2015. Lecture Notes in Computer Science(), vol 9150. Springer, Cham. https://doi.org/10.1007/978-3-319-20615-8_11

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-20615-8_11

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-20614-1

  • Online ISBN: 978-3-319-20615-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics