Skip to main content

Greedy Graph Edit Distance

  • Conference paper
  • First Online:
Machine Learning and Data Mining in Pattern Recognition (MLDM 2015)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 9166))

Abstract

In pattern recognition and data mining applications, where the underlying data is characterized by complex structural relationships, graphs are often used as a formalism for object representation. Yet, the high representational power and flexibility of graphs is accompanied by a significant increase of the complexity of many algorithms. For instance, exact computation of pairwise graph dissimilarity, i.e. distance, can be accomplished in exponential time complexity only. A previously introduced approximation framework reduces the problem of graph comparison to an instance of a linear sum assignment problem which allows graph dissimilarity computation in cubic time. The present paper introduces an extension of this approximation framework that runs in quadratic time. We empirically confirm the scalability of our extension with respect to the run time, and moreover show that the quadratic approximation leads to graph dissimilarities which are sufficiently accurate for graph based pattern classification.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Note that QAPs are known to be \(\mathcal {NP}\) -complete, and therefore, an exact and efficient algorithm for the graph edit distance problem can not be developed unless \(\mathcal {P} = \mathcal {NP}\).

  2. 2.

    In [24] it is formally proven that this approximation scheme builds an upper bound of the exact graph edit distance.

  3. 3.

    The assignment problem can also be formulated as finding a matching in a complete bipartite graph and is therefore also referred to as bipartite graph matching problem.

  4. 4.

    www.iam.unibe.ch/fki/databases/iam-graph-database.

References

  1. Perner, P. (ed.): MLDM 2012. LNCS, vol. 7376. Springer, Heidelberg (2012)

    MATH  Google Scholar 

  2. Perner, P. (ed.): MLDM 2013. LNCS, vol. 7988. Springer, Heidelberg (2013)

    MATH  Google Scholar 

  3. Duda, R.O., Hart, P.E., Stork, D.G.: Pattern Classification, 2nd edn. Wiley-Interscience, New York (2000)

    Google Scholar 

  4. Bishop, C.: Pattern Recognition and Machine Learning. Springer, New York (2008)

    Google Scholar 

  5. Shawe-Taylor, J., Cristianini, N.: Kernel Methods for Pattern Analysis. Cambridge University Press, Cambridge (2004)

    Book  Google Scholar 

  6. Conte, D., Foggia, P., Sansone, C., Vento, M.: Thirty years of graph matching in pattern recognition. Int. J. Pattern Recogn. Artif. Intell. 18(3), 265–298 (2004)

    Article  Google Scholar 

  7. Foggia, P., Percannella, G., Vento, M.: Graph matching and learning in pattern recognition in the last 10 years. Int. J. Pattern Recogn. Artif. Intell. 28(1) (2014). http://dx.doi.org/10.1142/S0218001414500013

  8. Cook, D., Holder, L. (eds.): Mining Graph Data. Wiley-Interscience, New York (2007)

    MATH  Google Scholar 

  9. Schenker, A., Bunke, H., Last, M., Kandel, A.: Graph-Theoretic Techniques for Web Content Mining. World Scientific Publishing, Singapore (2005)

    MATH  Google Scholar 

  10. Gärtner, T.: Kernels for Structured Data. World Scientific Publishng, Singapore (2008)

    MATH  Google Scholar 

  11. Gärtner, T., Horvath, T., Wrobel, S.: Graph kernels. In: Smmut, C., Webb, G.I. (eds.) Encyclopedia of Machine Learning, pp. 467–469. Springer US, London (2010)

    Google Scholar 

  12. Bunke, H., Allermann, G.: Inexact graph matching for structural pattern recognition. Pattern Recogn. Lett. 1, 245–253 (1983)

    Article  MATH  Google Scholar 

  13. Sanfeliu, A., Fu, K.: A distance measure between attributed relational graphs for pattern recognition. IEEE Trans. Syst. Man Cybern. (Part B) 13(3), 353–363 (1983)

    Article  MATH  Google Scholar 

  14. Cortés, X., Serratosa, F., Solé, A.: Active graph matching based on pairwise probabilities between nodes. In: Gimelfarb, G., Hancock, E., Imiya, A., Kuijper, A., Kudo, M. (eds.) SSPR 2012. LNCS, vol. 7626, pp. 98–106. Springer, Heidelberg (2012)

    Chapter  Google Scholar 

  15. Boeres, M., Ribeiro, C., Bloch, I.: A randomized heuristic for scene recognition by graph matching. In: Ribeiro, C., Martins, S. (eds.) WEA 2004. LNCS, vol. 3059, pp. 100–113. Springer, Heidelberg (2004)

    Chapter  Google Scholar 

  16. Sorlin, S., Solnon, C.: Reactive tabu search for measuring graph similarity. In: Brun, L., Vento, M. (eds.) GbRPR 2005. LNCS, vol. 3434, pp. 172–182. Springer, Heidelberg (2005)

    Chapter  Google Scholar 

  17. Neuhaus, M., Bunke, H.: An error-tolerant approximate matching algorithm for attributed planar graphs and its application to fingerprint classification. In: Fred, A., Caelli, T.M., Duin, R.P.W., Campilho, A.C. (eds.) SSPR 2004. LNCS, vol. 3138, pp. 180–189. Springer, Heidelberg (2004)

    Chapter  Google Scholar 

  18. Justice, D., Hero, A.: A binary linear programming formulation of the graph edit distance. IEEE Trans. Pattern Anal. Mach. Intell. 28(8), 1200–1214 (2006)

    Article  Google Scholar 

  19. Dickinson, P., Bunke, H., Dadej, A., Kraetzl, M.: On graphs with unique node labels. In: Hancock, E., Vento, M. (eds.) GbRPR 2003. LNCS, vol. 2726, pp. 13–23. Springer, Heidelberg (2003)

    Chapter  Google Scholar 

  20. Riesen, K., Bunke, H.: Approximate graph edit distance computation by means of bipartite graph matching. Image Vis. Comput. 27(4), 950–959 (2009)

    Article  Google Scholar 

  21. Burkard, R., Dell’Amico, M., Martello, S.: Assignment Problems. Society for Industrial and Applied Mathematics, Philadelphia (2009)

    Book  MATH  Google Scholar 

  22. Caetano, T.S., McAuley, J.J., Cheng, L., Le, Q.V., Smola, A.J.: Learning graph matching. IEEE Trans. Pattern Anal. Mach. Intell. 31(6), 1048–1058 (2009)

    Article  Google Scholar 

  23. Hart, P., Nilsson, N., Raphael, B.: A formal basis for the heuristic determination of minimum cost paths. IEEE Trans. Syst. Sci. Cybern. 4(2), 100–107 (1968)

    Article  Google Scholar 

  24. Riesen, K., Fischer, A., Bunke, H.: Computing upper and lower bounds of graph edit distance in cubic time. Accepted for publication in Proceedings of the IAPR TC3 International Workshop on Artificial Neural Networks in Pattern Recognition

    Google Scholar 

  25. Munkres, J.: Algorithms for the assignment and transportation problems. J. Soc. Ind. Appl. Math. 5(1), 32–38 (1957)

    Article  MATH  MathSciNet  Google Scholar 

  26. Kuhn, H.: The hungarian method for the assignment problem. Naval Res. Logistic Q. 2, 83–97 (1955)

    Article  Google Scholar 

  27. Jonker, R., Volgenant, A.: A shortest augmenting path algorithm for dense and sparse linear assignment problems. Computing 38, 325–340 (1987)

    Article  MATH  MathSciNet  Google Scholar 

  28. Jonker, R., Volgenant, A.: Improving the hungarian assignment algorithm. Oper. Res. Lett. 5, 171–175 (1986)

    Article  MATH  MathSciNet  Google Scholar 

  29. Bertsekas, D.: The auction algorithm: a distributed relaxation method for the assignment problem. Ann. Oper. Res. 14, 105–123 (1988)

    Article  MATH  MathSciNet  Google Scholar 

  30. Hung, M.: A polynomial simplex method for the assignment problem. Oper. Res. 28, 969–982 (1983)

    Article  Google Scholar 

  31. Orlin, J.: On the simplex algorithm for networks and generalized networks. Math. Program. Stud. 24, 166–178 (1985)

    Article  MATH  MathSciNet  Google Scholar 

  32. Ahuja, R., Orlin, J.: The scaling network simplex algorithm. Oper. Res. 40(1), 5–13 (1992)

    Article  MathSciNet  Google Scholar 

  33. Akgül, M.: A sequential dual simplex algorithm for the linear assignment problem. Oper. Res. Lett. 7, 155–518 (1988)

    Article  MATH  MathSciNet  Google Scholar 

  34. Srinivasan, V., Thompson, G.: Cost operator algorithms for the transportation problem. Math. Program. 12, 372–391 (1977)

    Article  MATH  MathSciNet  Google Scholar 

  35. Achatz, H., Kleinschmidt, P., Paparrizos, K.: A dual forest algorithm for the assignment problem. Appl. Geom. Discret. Math. AMS 4, 1–11 (1991)

    MathSciNet  Google Scholar 

  36. Burkard, R., Ceia, E.: Linear assignment problems and extensions. Technical report 127, Karl-Franzens-Universität Graz und Technische Universität Graz (1998)

    Google Scholar 

  37. Avis, D.: A survey of heuristics for the weighted matching problem. Networks 13, 475–493 (1983)

    Article  MATH  MathSciNet  Google Scholar 

  38. Kurtzberg, J.: On approximation methods for the assignment problem. J. ACM 9(4), 419–439 (1962)

    Article  MATH  MathSciNet  Google Scholar 

  39. Riesen, K., Bunke, H.: Graph classification based on vector space embedding. Int. J. Pattern Recogn. Artif. Intell. 23(6), 1053–1081 (2008)

    Article  MathSciNet  Google Scholar 

  40. Neuhaus, M., Bunke, H.: Bridging the Gap Between Graph Edit Distance and Kernel Machines. World Scientific Publishing, Singapore (2007)

    MATH  Google Scholar 

  41. Riesen, K., Bunke, H.: IAM graph database repository for graph based pattern recognition and machine learning. In: da Vitoria Lobo, N., et al. (eds.) Structural, Syntactic, and Statistical Pattern Recognition. LNCS, vol. 5342, pp. 287–297. Springer, Heidelberg (2008)

    Chapter  Google Scholar 

  42. Dosch, P., Valveny, E.: Report on the second symbol recognition contest. In: Wenyin, L., Lladós, J. (eds.) GREC 2005. LNCS, vol. 3926, pp. 381–397. Springer, Heidelberg (2005)

    Chapter  Google Scholar 

Download references

Acknowledgements

This work has been supported by the Hasler Foundation Switzerland and the Swiss National Science Foundation project 200021_153249.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kaspar Riesen .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this paper

Cite this paper

Riesen, K., Ferrer, M., Dornberger, R., Bunke, H. (2015). Greedy Graph Edit Distance. In: Perner, P. (eds) Machine Learning and Data Mining in Pattern Recognition. MLDM 2015. Lecture Notes in Computer Science(), vol 9166. Springer, Cham. https://doi.org/10.1007/978-3-319-21024-7_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-21024-7_1

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-21023-0

  • Online ISBN: 978-3-319-21024-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics