Skip to main content

Cardiovascular CTA: Contrast, Concepts, Protocols

  • Chapter
Dual-Energy CT in Cardiovascular Imaging

Abstract

During the past decade, a major technological challenge began with the introduction of dual energy computed tomography imaging in the clinical setting. Spectral imaging and the generation of low energy monochromatic imaging and material-specific datasets may contribute in a significant reduction in iodinated contrast volume during vascular computed tomography angiographies without hampering image quality or interpretability.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 129.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Cody DD, Moxley DM, Krugh KT, et al. Strategies for formulating appropriate MDCT techniques when imaging the chest, abdomen, and pelvis in pediatric patients. AJR Am J Roentgenol. 2004;182:849–59.

    Article  PubMed  Google Scholar 

  2. Klingenbeck-Regn K, Schaller S, Flohr T, et al. Subsecond multi-slice computed tomography: basics and applications. Eur J Radiol. 1999;31:110–24.

    Article  CAS  PubMed  Google Scholar 

  3. Hu H, He HD, Foley WD, et al. Four multidetector-row helical CT: image quality and volume coverage speed. Radiology. 2000;215:55–62.

    Article  CAS  PubMed  Google Scholar 

  4. Rubin GD. Data explosion: the challenge of multidetector row CT. Eur J Radiol. 2000;36:74–80.

    Article  CAS  PubMed  Google Scholar 

  5. Rydberg J, Buckwalter KA, Caldemeyer KS, et al. Multisection CT: scanning techniques and clinical applications. Radiographics. 2000;20:1787–806.

    Article  CAS  PubMed  Google Scholar 

  6. Rubin GD, Dake MD, Napel SA, et al. Threedimensional spiral CT angiography of the abdomen: initial clinical experience. Radiology. 1993;186:147–52.

    Article  CAS  PubMed  Google Scholar 

  7. Rubin GD, Walker PJ, Dake MJ, et al. Threedimensional spiral computed tomographic angiography: an alternative imaging modality for the abdominal aorta and its branches. J Vasc Surg. 1993;18:565–665.

    Article  Google Scholar 

  8. Hoffmann MH, Shi H, Schmid FT, et al. Noninvasive coronary imaging with MDCT in comparison to invasive conventional coronary angiography: a fast developing technology. AJR Am J Roentgenol. 2004;182:601–8.

    Article  PubMed  Google Scholar 

  9. Fleischmann D. MDCT of renal and mesenteric vessels. Eur Radiol. 2003;13 Suppl 5:M94–101.

    Article  PubMed  Google Scholar 

  10. Kurcz J, Garcarek J, Guziński M, et al. Multislice computed tomography angiography as an imaging modality of choice in patients with suspicion of pulmonary embolism – own experiences and modern imaging techniques. Adv Clin Exp Med. 2013;22:705–13.

    PubMed  Google Scholar 

  11. Schertler T, Feuchtner G, Frauenfelder T, et al. Use of multislice CT in the evaluation of patients with acute chest pain. Prax (Bern 1994). 2010;99:545–52.

    Article  CAS  Google Scholar 

  12. Theisen D, von Tengg-Kobligk H, Michaely H, et al. CT angiography of the aorta. BJ Radiologe. 2007;47:982–92.

    Article  CAS  Google Scholar 

  13. Wang XM, Wu LB, Sun C. Clinical application of 64-slice spiral CT in the diagnosis of the tetralogy of fallot. Eur J Radiol. 2007;64:296–301.

    Article  PubMed  Google Scholar 

  14. Carrascosa P, Rodriguez-Granillo GA, Capuñay C, et al. Low-dose CT coronary angiography using iterative reconstruction with a 256-slice CT scanner. World J Cardiol. 2013;5:382–6. doi:10.4330/wjc.v5.i10.382.

    PubMed Central  PubMed  Google Scholar 

  15. Carrascosa P, Capuñay C, Deviggiano A, et al. Thoracic aorta cardiac-cycle related dynamic changes assessed with a 256-slice CT scanner. Cardiovasc Diagn Ther. 2013;3:125–8.

    PubMed Central  PubMed  Google Scholar 

  16. Carrascosa P, Capuñay C, Deviggiano A, et al. Accuracy of low-dose prospectively gated axial coronary CT angiography for the assessment of coronary artery stenosis in patients with stable heart rate. J Cardiovasc Comput Tomogr. 2010;4:197–205.

    Article  PubMed  Google Scholar 

  17. Petersilka M, Bruder H, Krauss B. Technical principles of dual source CT. Eur J Radiol. 2008;68:362–8.

    Article  PubMed  Google Scholar 

  18. Johnson TR. Dual-energy CT: general principles. AJR Am J Roentgenol. 2012;199(5 Suppl):S3–8.

    Article  PubMed  Google Scholar 

  19. Bolus DN. Dual-energy computed tomographic scanners: principles, comparisons, and contrasts. J Comput Assist Tomogr. 2013;37:944–7.

    Article  PubMed  Google Scholar 

  20. Morgan DE. Dual-energy CT, of the abdomen. Abdom Imaging. 2014;39:108–34.

    Article  PubMed  Google Scholar 

  21. Yuan R, Shuman WP, Earls JP, et al. Reduced iodine load at CT pulmonary angiography with dual-energy monochromatic imaging: comparison with standard CT pulmonary angiography--a prospective randomized trial. Radiology. 2012;262:290–7.

    Article  PubMed  Google Scholar 

  22. Carrascosa P, Capuñay C, Rodriguez-Granillo GA, et al. Substantial iodine volume load reduction in CT angiography with dual-energy imaging: insights from a pilot randomized study. Int J Cardiovasc Imaging. 2014;30:1613–20.

    Article  PubMed  Google Scholar 

  23. Toprak O. Conflicting and new risk factors for contrast-induced nephropathy. J Urol. 2007;178:2277–83.

    Article  PubMed  Google Scholar 

  24. Zhang S, Levin DC, Halpern EJ. Accuracy of MDCT in assessing the degree of stenosis caused by calcified coronary artery plaques. AJR Am J Roentgenol. 2008;191:1676–83.

    Article  PubMed  Google Scholar 

  25. Madaj P, Gopal A, Hamirani Y. The degree of stenosis on cardiac catheterization compared to calcified coronary segments on multidetector row cardiac computed tomography MDCT. Acad Radiol. 2010;17:1001–5.

    Article  PubMed  Google Scholar 

  26. Yu L, Leng S, McCollough CH. Dual-energy CT-based monochromatic imaging. AJR Am J Roentgenol. 2012;199(5 Suppl):S9–15.

    Article  PubMed  Google Scholar 

  27. Stolzmann P, Winklhofer S, Schwendener N, et al. Monoenergetic computed tomography reconstructions reduce beam hardening artifacts from dental restorations. Forensic Sci Med Pathol. 2013;9:327–32.

    Article  PubMed  Google Scholar 

  28. Scheske JA, O’Brien JM, Earls JP. Coronary artery imaging with single-source rapid kilovolt peak-switching dual-energy CT. Radiology. 2013;268:702–9.

    Article  PubMed  Google Scholar 

  29. Tran D, Straka M, Roos J, et al. Dual-energy CT discrimination of iodine and calcium: experimental results and implications for lower extremity CT angiography. Acad Radiol. 2009;16:160–71.

    Article  PubMed  Google Scholar 

  30. Joe E, Kim SH, Lee KB. Feasibility and accuracy of dual-source dual-energy CT for noninvasive determination of hepatic iron accumulation. Radiology. 2012;262:126–35.

    Article  PubMed  Google Scholar 

  31. Morgan DE, Weber AC, Lockhart ME, et al. Differentiation of high lipid content from low lipid content adrenal lesions using single-source rapid kilovolt (peak)-switching dual-energy multidetector CT. J Comput Assist Tomogr. 2013;37:937–43.

    Article  PubMed  Google Scholar 

  32. Saito M. Potential of dual-energy subtraction for converting CT numbers to electron density based on a single linear relationship. Med Phys. 2012;39:2021–30.

    Article  PubMed  Google Scholar 

  33. Landry G, Seco J, Gaudreault M. Deriving effective atomic numbers from DECT based on a parameterization of the ratio of high and low linear attenuation coefficients. Phys Med Biol. 2013;58:6851–66.

    Article  CAS  PubMed  Google Scholar 

  34. Boroto K, Remy-Jardin M, Flohr T, et al. Thoracic applications of dual-source CT technology. Eur J Radiol. 2008;68:375–84.

    Article  PubMed  Google Scholar 

  35. Silva AC, Morse BG, Hara AK, et al. Dual-energy (spectral) CT: applications in abdominal imaging. RadioGraphics. 2011;31:1031–46; discussion, 1047–1050.

    Article  PubMed  Google Scholar 

  36. Fleischmann D, Hittmair K. Mathematical analysis of arterial enhancement and optimization of bolus geometry for CT angiography using the discrete fourier transform. J Comput Assist Tomogr. 1999;23:474–84.

    Article  CAS  PubMed  Google Scholar 

  37. Fleischmann D, Rubin GD, Bankier AA, et al. Improved uniformity of aortic enhancement with customized contrast medium injection protocols at CT angiography. Radiology. 2000;214:363–71.

    Article  CAS  PubMed  Google Scholar 

  38. Philipp MO, Kubin K, Mang T, et al. Three-dimensional volume rendering of multidetector-row CT data: applicable for emergency radiology. Eur J Radiol. 2003;48:33–8.

    Article  PubMed  Google Scholar 

  39. Portugaller HR, Schoellnast H, Tauss J. Semitransparent volume-rendering CT angiography for lesion display in aortoiliac arteriosclerotic disease. J Vasc Interv Radiol. 2003;14:1023–30.

    Article  PubMed  Google Scholar 

  40. Zhang R, Thibault JB, Bouman C et al. Model-based iterative reconstruction for dual-energy x-ray CT using a joint quadratic likelihood model. IEEE Trans Med Imaging. 2013;33:117–34.

    Google Scholar 

  41. Faggioni L, Neri E, Sbragia P, et al. 80-kV pulmonary CT angiography with 40 mL of iodinated contrast material in lean patients: comparison of vascular enhancement with iodixanol (320 mg I/mL) and iomeprol (400 mg I/mL). AJR Am J Roentgenol. 2012;199:1220–5.

    Article  PubMed  Google Scholar 

  42. Wang R, Yu W, Wu R, et al. Improved image quality in dual-energy abdominal CT: comparison of iterative reconstruction in image space and filtered back projection reconstruction. AJR Am J Roentgenol. 2012;199:402–6.

    Article  PubMed  Google Scholar 

  43. Sommer WH, Johnson TR, Becker CR, et al. The value of dual-energy bone removal in maximum intensity projections of lower extremity computed tomography angiography. Invest Radiol. 2009;44:285–92.

    Article  PubMed  Google Scholar 

  44. Yamamoto S, McWilliams J, Arellano C, et al. Dual-energy CT angiography of pelvic and lower extremity arteries: dual-energy bone subtraction versus manual bone subtraction. Clin Radiol. 2009;64:1088–96.

    Article  CAS  PubMed  Google Scholar 

  45. Meyer BC, Werncke T, Hopfenmuller W, et al. Dual energy CT of peripheral arteries: effect of automatic bone and plaque removal on image quality and grading of stenoses. Eur J Radiol. 2008;68:414–22.

    Article  CAS  PubMed  Google Scholar 

  46. Venema HW, Hulsmans FJH, den Heeten GJ. CT angiography of the circle of Willis and intracranial internal carotid arteries: maximum intensity projection with matched mask bone elimination-feasibility study. Radiology. 2001;218:893–8.

    Article  CAS  PubMed  Google Scholar 

  47. Ameli-Renani S, Ramsay L, Bacon JL. Dual-energy computed tomography in the assessment of vascular and parenchymal enhancement in suspected pulmonary hypertension. J Thorac Imaging. 2014;29:98–106.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Carlos Capuñay MD .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Capuñay, C., Deviggiano, A. (2015). Cardiovascular CTA: Contrast, Concepts, Protocols. In: Carrascosa, P., Cury, R., García, M., Leipsic, J. (eds) Dual-Energy CT in Cardiovascular Imaging. Springer, Cham. https://doi.org/10.1007/978-3-319-21227-2_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-21227-2_5

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-21226-5

  • Online ISBN: 978-3-319-21227-2

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics