Skip to main content

A Multi-Party Protocol for Privacy-Preserving Cooperative Linear Systems of Equations

  • Conference paper
  • First Online:
Cryptography and Information Security in the Balkans (BalkanCryptSec 2014)

Part of the book series: Lecture Notes in Computer Science ((LNSC,volume 9024))

Abstract

The privacy-preserving cooperative linear system of equations (PPC-LSE) problem is an important scientific problem whose solutions find applications in many real-word scenarios, such as banking, manufacturing, and telecommunications. Roughly speaking, in PPC-LSE a set of parties want to jointly compute the solution to a linear system of equations without disclosing their own inputs. The linear system is built through the parties’ inputs.

In this paper we design a novel protocol for PPC-LSE. Our protocol has simulation-based security in the semi-honest model, assuming that one of the participants is not willing to collude with other parties. Previously to our work, the only known solutions to PPC-LSE were for the two-party case, and the only known other protocol for the multi-party case was less efficient and proven secure in a weaker model.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    We note that a private channel can be straightforwardly established by means of encryption.

  2. 2.

    Clearly, this will introduce a requirement of a public key infrastructure.

References

  1. Asharov, G., Lindell, Y., Schneider, T., Zohner, M.: More efficient oblivious transfer and extensions for faster secure computation. In: ACM Conference on Computer and Communications Security, pp. 535–548 (2013)

    Google Scholar 

  2. Ateniese, G., Dagdelen, Ö., Damgård, I., Venturi, D.: Entangled cloud storage. IACR Cryptology ePrint Arch. 2012, 511 (2012)

    Google Scholar 

  3. Bellare, M., Hoang, V.T., Rogaway, P.: Foundations of garbled circuits. In: ACM Conference on Computer and Communications Security, pp. 784–796 (2012)

    Google Scholar 

  4. Bendlin, R., Damgård, I., Orlandi, C., Zakarias, S.: Semi-homomorphic encryption and multiparty computation. In: Paterson, K.G. (ed.) EUROCRYPT 2011. LNCS, vol. 6632, pp. 169–188. Springer, Heidelberg (2011)

    Chapter  Google Scholar 

  5. Boneh, D., Gentry, C., Gorbunov, S., Halevi, S., Nikolaenko, V., Segev, G., Vaikuntanathan, V., Vinayagamurthy, D.: Fully key-homomorphic encryption, arithmetic circuit ABE and compact garbled circuits. In: Nguyen, P.Q., Oswald, E. (eds.) EUROCRYPT 2014. LNCS, vol. 8441, pp. 533–556. Springer, Heidelberg (2014)

    Chapter  Google Scholar 

  6. Brassard, G., Crépeau, C., Robert, J.M.: All-or-nothing disclosure of secrets. In: Odlyzko, A.M. (ed.) CRYPTO 1986. LNCS, vol. 263, pp. 234–238. Springer, Heidelberg (1987)

    Google Scholar 

  7. Dagdelen, Ö., Mohassel, P., Venturi, D.: Rate-limited secure function evaluation: definitions and constructions. In: Public Key Cryptography, pp. 461–478 (2013)

    Google Scholar 

  8. Dagdelen, Ö., Venturi, D.: A multi-party protocol for privacy-preserving cooperative linear system of equations. In: BalkanCryptSec (2014)

    Google Scholar 

  9. Damgård, I.B., Ishai, Y.: Scalable secure multiparty computation. In: Dwork, C. (ed.) CRYPTO 2006. LNCS, vol. 4117, pp. 501–520. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

  10. Damgård, I., Ishai, Y., Krøigaard, M.: Perfectly secure multiparty computation and the computational overhead of cryptography. In: Gilbert, H. (ed.) EUROCRYPT 2010. LNCS, vol. 6110, pp. 445–465. Springer, Heidelberg (2010)

    Chapter  Google Scholar 

  11. Damgård, I., Ishai, Y., Krøigaard, M., Nielsen, J.B., Smith, A.: Scalable multiparty computation with nearly optimal work and resilience. In: Wagner, D. (ed.) CRYPTO 2008. LNCS, vol. 5157, pp. 241–261. Springer, Heidelberg (2008)

    Chapter  Google Scholar 

  12. Damgård, I.B., Nielsen, J.B.: Scalable and unconditionally secure multiparty computation. In: Menezes, A. (ed.) CRYPTO 2007. LNCS, vol. 4622, pp. 572–590. Springer, Heidelberg (2007)

    Chapter  Google Scholar 

  13. Damgård, I., Pastro, V., Smart, N., Zakarias, S.: Multiparty computation from somewhat homomorphic encryption. In: Safavi-Naini, R., Canetti, R. (eds.) CRYPTO 2012. LNCS, vol. 7417, pp. 643–662. Springer, Heidelberg (2012)

    Chapter  Google Scholar 

  14. Damgrd, I., Nielsen, J.B., Orlandi, C.: Essentially optimal universally composable oblivious transfer. In: Cryptology ePrint Archive, Report 2008/220 (2008)

    Google Scholar 

  15. Du, W., Atallah, M.J.: Privacy-preserving cooperative scientific computations. In: CSFW, pp. 273–294 (2001)

    Google Scholar 

  16. Du, W., Zhan, J.Z.: A practical approach to solve secure multi-party computation problems. In: Proceedings of the 2002 Workshop on New Security Paradigms, Virginia Beach, VA, USA, September 23–26, 2002, pp. 127–135 (2002)

    Google Scholar 

  17. Dubovitskaya, M., Scafuro, A., Visconti, I.: On efficient non-interactive oblivious transfer with tamper-proof hardware. In: Cryptology ePrint Archive, Report 2010/509 (2010)

    Google Scholar 

  18. Even, S., Goldreich, O., Lempel, A.: A randomized protocol for signing contracts. Commun. ACM 28(6), 637–647 (1985)

    Article  MathSciNet  Google Scholar 

  19. Goldreich, O., Micali, S., Wigderson, A.: How to play any mental game or a completeness theorem for protocols with honest majority. In: STOC, pp. 218–229 (1987)

    Google Scholar 

  20. Hazay, C.: Oblivious polynomial evaluation and secure set-intersection from algebraic PRFs. IACR Cryptology ePrint Arch. 2015, 004 (2015)

    Google Scholar 

  21. Hazay, C.: Lindell, yehuda: efficient oblivious polynomial evaluation with simulation-based security. IACR Cryptology ePrint Arch. 2009, 459 (2009)

    Google Scholar 

  22. Hazay, C., Lindell, Y.: Efficient Secure Two-Party Protocols - Techniques and Constructions. Information Security and Cryptography. Springer, Heidelberg (2010)

    Book  MATH  Google Scholar 

  23. Huang, Y., Evans, D., Katz, J., Malka, L.: Faster secure two-party computation using garbled circuits. In: USENIX Security Symposium (2011)

    Google Scholar 

  24. Ishai, Y., Kilian, J., Nissim, K., Petrank, E.: Extending oblivious transfers efficiently. In: Boneh, D. (ed.) CRYPTO 2003. LNCS, vol. 2729, pp. 145–161. Springer, Heidelberg (2003)

    Chapter  Google Scholar 

  25. Kamara, S., Mohassel, P., Raykova, M.: Outsourcing multi-party computation. IACR Cryptology ePrint Arch. 2011, 272 (2011)

    MATH  Google Scholar 

  26. Kang, J.-S., Hong, D.: A practical privacy-preserving cooperative computation protocol without oblivious transfer for linear systems of equations. JIPS 3(1), 21–25 (2007)

    MathSciNet  Google Scholar 

  27. Mishra, D.K., Trivedi, P., Shukla, S.: A glance at secure multiparty computation for privacy preserving data mining. Int. J. Comput. Sci. Eng. 1(3), 171–175 (2009)

    Google Scholar 

  28. Mohassel, P., Riva, B.: Garbled circuits checking garbled circuits: more efficient and secure two-party computation. In: Canetti, R., Garay, J.A. (eds.) CRYPTO 2013, Part II. LNCS, vol. 8043, pp. 36–53. Springer, Heidelberg (2013)

    Chapter  Google Scholar 

  29. Naor, M., Pinkas, B.: Oblivious transfer and polynomial evaluation. In: STOC pp. 245–254 (1999)

    Google Scholar 

  30. Nielsen, J.B., Nordholt, P.S., Orlandi, C., Burra, S.S.: A new approach to practical active-secure two-party computation. In: Safavi-Naini, R., Canetti, R. (eds.) CRYPTO 2012. LNCS, vol. 7417, pp. 681–700. Springer, Heidelberg (2012)

    Chapter  Google Scholar 

  31. Peikert, C., Vaikuntanathan, V., Waters, B.: A framework for efficient and composable oblivious transfer. In: Wagner, D. (ed.) CRYPTO 2008. LNCS, vol. 5157, pp. 554–571. Springer, Heidelberg (2008)

    Chapter  Google Scholar 

  32. Michael O. Rabin. How to exchange secrets with oblivious transfer. Cryptology ePrint Archive, Report 2005/187, 2005

    Google Scholar 

  33. Troncoso-Pastoriza, J.R., Comesana, P., Pérez-González, F.: Secure direct and iterative protocols for solving systems of linear equations. In: Proceedings of the First International Workshop Signal Processing in the Encrypted Domain (SPEED), pp. 122–141 (2009)

    Google Scholar 

  34. Tzeng, W.-G.: Efficient 1-out-n oblivious transfer schemes. In: Naccache, D., Paillier, P. (eds.) PKC 2002. LNCS, vol. 2274, pp. 159–171. Springer, Heidelberg (2002)

    Chapter  Google Scholar 

  35. Wu, N., Zhang, J., Ning, L.: Discovering multivariate linear relationship securely. In: Proceedings from the Sixth Annual IEEE SMC, Information Assurance Workshop, IAW 2005, pp. 436–437 (2005)

    Google Scholar 

  36. Yang, X., Yu, Z., Kang, B.: Privacy-preserving cooperative linear system of equations protocol and its application. In: WiCOM, pp. 1–4 (2008)

    Google Scholar 

  37. Yao, A.C.: Protocols for secure computations (extended abstract). In: FOCS, pp. 160–164 (1982)

    Google Scholar 

  38. Yao, A.C.: How to generate and exchange secrets (extended abstract). In: FOCS, pp. 162–167 (1986)

    Google Scholar 

Download references

Acknowledgments

Özgür Dagdelen was supported by the German Federal Ministry of Education and Research (BMBF) within EC-SPRIDE.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Özgür Dagdelen .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this paper

Cite this paper

Dagdelen, Ö., Venturi, D. (2015). A Multi-Party Protocol for Privacy-Preserving Cooperative Linear Systems of Equations. In: Ors, B., Preneel, B. (eds) Cryptography and Information Security in the Balkans. BalkanCryptSec 2014. Lecture Notes in Computer Science(), vol 9024. Springer, Cham. https://doi.org/10.1007/978-3-319-21356-9_11

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-21356-9_11

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-21355-2

  • Online ISBN: 978-3-319-21356-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics