Skip to main content

Therapeutic Uses of Atmospheric Pressure Plasma: Cancer and Wound

  • Chapter
  • First Online:
Biomedical Engineering: Frontier Research and Converging Technologies

Part of the book series: Biosystems & Biorobotics ((BIOSYSROB,volume 9))

Abstract

Atmospheric pressure plasma (APP), composed of multiple active components, including charged particles, reactive oxygen species, and radicals, recently emerged as a promising tool in cancer therapy and wound treatment. Driven by the increasingly growing interests on plasma medicine, numerous in vivo tests and in vitro studies on the applicability of the APP for clinical treatments have been performed. In particular, the APP was shown to be effective in removing the targeted cells by causing apoptosis or necrosis. More importantly, in some studies, these effects were demonstrated to be specific to cancer cells, which was further confirmed in animal models where the APP effectively suppressed the tumor growth. In addition to the cancer therapy, the APP treatment targeting the chronic wound has shown that the plasma could improve the healing process by accelerating blood coagulation, bacteria sterilization, and re-epithelialization around the wounded area. Interestingly, the plasma therapy on cutaneous wound also presented promising outcomes in an animal study with reduced scar formations. In this chapter, we report a general overview of the recent trends and progresses in the effects of the APP treatment on cancer and wound, and discuss the potential applications of the APP as a therapeutic tool.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. States of matter, Art. Encyclopædia Britannica Online. Web, April 2015. http://global.britannica.com/EBchecked/media/148660/States-of-matter

  2. Griffinstorm (Own work) [CC BY-SA 4.0]. http://commons.wikimedia.org/wiki/File:Staccoto_Lightning.jpg

  3. http://biblehub.com/greek/4110.htm

  4. Laroussi, M.: Low-Temperature Plasmas for Medicine? IEEE Transactions on Plasma Science 37(6), 714–725 (2009)

    Google Scholar 

  5. Fridman, G., et al.: Applied plasma medicine. Plasma Processes and Polymers 5(6), 503–533 (2008)

    Google Scholar 

  6. Kong, M.G., et al.: Plasma medicine: an introductory review. New Journal of Physics 11, 115012 (2009)

    Google Scholar 

  7. Heinlin, J., et al.: Plasma applications in medicine with a special focus on dermatology. Journal of the European Academy of Dermatology and Venereology 25(1), 1–11 (2011)

    Google Scholar 

  8. Hoffmann, C., Berganza, C., Zhang, J.: Cold Atmospheric Plasma: methods of production and application in dentistry and oncology. Medical Gas Research 3, 21 (2013)

    Google Scholar 

  9. Waye, J.D., Grund, K.E., Farin, G.: Argon plasma coagulation (APC) - Clinical usefulness in flexible endoscopy. Gastrointestinal Endoscopy 43(4), 64 (1996)

    Google Scholar 

  10. Raiser, J., Zenker, M.: Argon plasma coagulation for open surgical and endoscopic applications: state of the art. Journal of Physics D: Applied Physics 39(16), 3520–3523 (2006)

    Google Scholar 

  11. Kaassis, M., et al.: Argon Plasma Coagulation for the Treatment of Hemorrhagic Radiation Proctitis. Endoscopy 32(09), 673–676 (2000)

    Google Scholar 

  12. Laroussi, M., Akan, T.: Arc-free atmospheric pressure cold plasma jets: A review. Plasma Processes and Polymers 4(9), 777–788 (2007)

    Google Scholar 

  13. Ehlbeck, J., et al.: Low temperature atmospheric pressure plasma sources for microbial decontamination. Journal of Physics D: Applied Physics 44(1), 013002 (2011)

    Google Scholar 

  14. Laroussi, M.: Nonthermal decontamination of biological media by atmospheric-pressure plasmas: Review, analysis, and prospects. IEEE Transactions on Plasma Science 30(4), 1409–1415 (2002)

    Google Scholar 

  15. Tendero, C., et al.: Atmospheric pressure plasmas: A review. Spectrochimica Acta Part B: Atomic Spectroscopy 61(1), 2–30 (2006)

    MathSciNet  Google Scholar 

  16. Kim, J.Y., et al.: Single-Cell-Level Cancer Therapy Using a Hollow Optical Fiber-Based Microplasma. Small 6(14), 1474–1478 (2010)

    Google Scholar 

  17. Weltmann, K.D., et al.: Antimicrobial treatment of heat sensitive products by miniaturized atmospheric pressure plasma jets (APPJs). Journal of Physics D: Applied Physics 41(19), 194008 (2008)

    Google Scholar 

  18. Park, G.Y., et al.: Atmospheric-pressure plasma sources for biomedical applications. Plasma Sources Science & Technology 21(4), 043001 (2012)

    Google Scholar 

  19. Kim, J.Y., et al.: 15 mu m-sized single-cellular-level and cell-manipulatable microplasma jet in cancer therapies. Biosensors & Bioelectronics 26(2), 555–559 (2010)

    Google Scholar 

  20. Nastuta, A.V., et al.: Stimulation of wound healing by helium atmospheric pressure plasma treatment. Journal of Physics D: Applied Physics 44(10), 105204 (2011)

    Google Scholar 

  21. Robert, E., et al.: Experimental Study of a Compact Nanosecond Plasma Gun. Plasma Processes and Polymers 6(12), 795–802 (2009)

    Google Scholar 

  22. Bogle, M.A., Arndt, K.A., Dover, J.S.: Evaluation of plasma skin regeneration technology in low-energy full-facial rejuvenation. Archives of Dermatology 143(2), 168–174 (2007)

    Google Scholar 

  23. Arndt, S., et al.: Cold Atmospheric Plasma (CAP) Changes Gene Expression of Key Molecules of the Wound Healing Machinery and Improves Wound Healing In Vitro and In Vivo. Plos One 8(11), e79325 (2013)

    Google Scholar 

  24. Brehmer, F., et al.: Alleviation of chronic venous leg ulcers with a hand-held dielectric barrier discharge plasma generator (PlasmaDerm (R) VU-2010): results of a monocentric, two-armed, open, prospective, randomized and controlled trial (NCT01415622). Journal of the European Academy of Dermatology and Venereology 29(1), 148–155 (2015)

    Google Scholar 

  25. Emmert, S., et al.: Atmospheric pressure plasma in dermatology: Ulcus treatment and much more. Clinical Plasma Medicine 1(1), 24–29 (2013)

    Google Scholar 

  26. Haertel, B., et al.: Non-thermal atmospheric-pressure plasma can influence cell adhesion molecules on HaCaT-keratinocytes. Experimental Dermatology 20(3), 282–284 (2011)

    Google Scholar 

  27. Fetykov, A.I., et al.: The effectiveness of cold plasma treatment of diabetic feet syndrome, complicated by purulo-necrotic process. In: 2nd International Conference on Plasma Medicine, San Antonio, TX, USA (2009)

    Google Scholar 

  28. Shekhter, A.B., et al.: Experimental and clinical validation of plasmadynamic therapy of wounds with nitric oxide. Bulletin of Experimental Biology and Medicine 126, 829–834 (1998)

    Google Scholar 

  29. Weltmann, K.D., et al.: Atmospheric Pressure Plasma Jet for Medical Therapy: Plasma Parameters and Risk Estimation. Contributions to Plasma Physics 49(9), 631–640 (2009)

    Google Scholar 

  30. Fridman, G., et al.: Floating electrode dielectric barrier discharge plasma in air promoting apoptotic behavior in melanoma skin cancer cell lines. Plasma Chemistry and Plasma Processing 27(2), 163–176 (2007)

    MathSciNet  MATH  Google Scholar 

  31. Lee, H.J., et al.: Degradation of adhesion molecules of G361 melanoma cells by a non-thermal atmospheric pressure microplasma. New Journal of Physics 11, 115026 (2009)

    Google Scholar 

  32. Kim, S.J., et al.: Induction of apoptosis in human breast cancer cells by a pulsed atmospheric pressure plasma jet. Applied Physics Letters 97(2), 023702 (2010)

    Google Scholar 

  33. Kim, J.Y., et al.: Single-Cell-Level Microplasma Cancer Therapy. Small 7(16), 2291–2295 (2011)

    Google Scholar 

  34. Partecke, L.I., et al.: Tissue Tolerable Plasma (TTP) induces apoptosis in pancreatic cancer cells in vitro and in vivo. BMC Cancer 12, 473 (2012)

    Google Scholar 

  35. Stoffels, E., Kieft, I.E., Sladek, R.E.J.: Superficial treatment of mammalian cells using plasma needle. Journal of Physics D-Applied Physics 36(23), 2908–2913 (2003)

    Google Scholar 

  36. Gweon, B., et al.: Plasma effects on subcellular structures. Applied Physics Letters 96(10), 101501 (2010)

    Google Scholar 

  37. Kim, G.J., et al.: DNA damage and mitochondria dysfunction in cell apoptosis induced by nonthermal air plasma. Applied Physics Letters 96(2), 021502 (2010)

    Google Scholar 

  38. Laroussi, M.: Sterilization of contaminated matter with an atmospheric pressure plasma. IEEE Transactions on Plasma Science 24(3), 1188–1191 (1996)

    Google Scholar 

  39. Gweon, B., et al.: Escherichia coli deactivation study controlling the atmospheric pressure plasma discharge conditions. Current Applied Physics 9(3), 625–628 (2009)

    Google Scholar 

  40. Gweon, B., et al.: Differential responses of human liver cancer and normal cells to atmospheric pressure plasma. Applied Physics Letters 99(6), 063701 (2011)

    Google Scholar 

  41. Kieft, I.E., Kurdi, M., Stoffels, E.: Reattachment and apoptosis after plasma-needle treatment of cultured cells. IEEE Transactions on Plasma Science 34(4), 1331–1336 (2006)

    Google Scholar 

  42. Shashurin, A., et al.: Living tissue under treatment of cold plasma atmospheric jet. Applied Physics Letters 93(18), 181501 (2008)

    Google Scholar 

  43. Kieft, I.E., et al.: Plasma treatment of mammalian vascular cells: A quantitative description. IEEE Transactions on Plasma Science 33(2), 771–775 (2005)

    Google Scholar 

  44. Joh, H.M., et al.: Reactive oxygen species-related plasma effects on the apoptosis of human bladder cancer cells in atmospheric pressure pulsed plasma jets. Applied Physics Letters 101(5), 053703 (2012)

    Google Scholar 

  45. Kim, G.C., et al.: Air plasma coupled with antibody-conjugated nanoparticles: a new weapon against cancer. Journal of Physics D: Applied Physics 42(3), 032005 (2009)

    Google Scholar 

  46. Arndt, S., et al.: Cold atmospheric plasma, a new strategy to induce senescence in melanoma cells. Experimental Dermatology 22(4), 284–289 (2013)

    Google Scholar 

  47. Iseki, S., et al.: Selective killing of ovarian cancer cells through induction of apoptosis by nonequilibrium atmospheric pressure plasma. Applied Physics Letters 100(11), 113702 (2012)

    Google Scholar 

  48. Keidar, M., et al.: Cold plasma selectivity and the possibility of a paradigm shift in cancer therapy. British Journal of Cancer 105(9), 1295–1301 (2011)

    Google Scholar 

  49. Kim, G.J., et al.: DNA damage and mitochondria dysfunction in cell apoptosis induced by nonthermal air plasma. Applied Physics Letters 96(2) (2010)

    Google Scholar 

  50. Kaushik, N.K., et al.: Effect of jet plasma on T98G human brain cancer cells. Current Applied Physics 13(1), 176–180 (2013)

    MathSciNet  Google Scholar 

  51. Vandamme, M., et al.: ROS implication in a new antitumor strategy based on non-thermal plasma. International Journal of Cancer 130(9), 2185–2194 (2012)

    Google Scholar 

  52. Koritzer, J., et al.: Restoration of Sensitivity in Chemo - Resistant Glioma Cells by Cold Atmospheric Plasma. Plos One 8(5), e64498 (2013)

    Google Scholar 

  53. Brulle, L., et al.: Effects of a Non Thermal Plasma Treatment Alone or in Combination with Gemcitabine in a MIA PaCa2-luc Orthotopic Pancreatic Carcinoma Model. Plos One 7(12), e52653 (2012)

    Google Scholar 

  54. Huang, J., et al.: Deactivation of A549 cancer cells in vitro by a dielectric barrier discharge plasma needle. Journal of Applied Physics 109(5), 053305 (2011)

    Google Scholar 

  55. Kim, J.Y., et al.: Apoptosis of lung carcinoma cells induced by a flexible optical fiber-based cold microplasma. Biosensors & Bioelectronics 28(1), 333–338 (2011)

    Google Scholar 

  56. Panngom, K., et al.: Preferential killing of human lung cancer cell lines with mitochondrial dysfunction by nonthermal dielectric barrier discharge plasma. Cell Death & Disease 4, e642 (2013)

    Google Scholar 

  57. Han, X., et al.: DNA damage in oral cancer cells induced by nitrogen atmospheric pressure plasma jets. Applied Physics Letters 102(23), 233703 (2013)

    Google Scholar 

  58. Thiyagarajan, M., Waldbeser, L., Whitmill, A.: THP-1 leukemia cancer treatment using a portable plasma device. Studies in Health Technology and Informatics 173, 515–517 (2012)

    Google Scholar 

  59. Kim, C.H., et al.: Effects of atmospheric nonthermal plasma on invasion of colorectal cancer cells. Applied Physics Letters 96(24), 243701 (2010)

    Google Scholar 

  60. Georgescu, N., Lupu, A.R.: Tumoral and Normal Cells Treatment With High-Voltage Pulsed Cold Atmospheric Plasma Jets. IEEE Transactions on Plasma Science 38(8), 1949–1955 (2010)

    Google Scholar 

  61. Volotskova, O., et al.: Targeting the cancer cell cycle by cold atmospheric plasma. Scientific Reports 2, 636 (2012)

    Google Scholar 

  62. Lee, J.K., et al.: Biomedical Applications of Low Temperature Atmospheric Pressure Plasmas to Cancerous Cell Treatment and Tooth Bleaching. Japanese Journal of Applied Physics 50(8), JF01 (2011)

    Google Scholar 

  63. Kim, C.H., et al.: Induction of cell growth arrest by atmospheric non-thermal plasma in colorectal cancer cells. Journal of Biotechnology 150(4), 530–538 (2010)

    Google Scholar 

  64. Gweon, B., et al.: Suppression of angiogenesis by atmospheric pressure plasma in human aortic endothelial cells. Applied Physics Letters 104(13), 133701 (2014)

    Google Scholar 

  65. Moon, S.Y., et al.: Feasibility study of the sterilization of pork and human skin surfaces by atmospheric pressure plasmas. Thin Solid Films 517(14), 4272–4275 (2009)

    Google Scholar 

  66. Awakowicz, P., et al.: Biological Stimulation of the Human Skin Applying Health-Promoting Light and Plasma Sources. Contributions to Plasma Physics 49(9), 641–647 (2009)

    Google Scholar 

  67. Rajasekaran, P., et al.: Characterization of Dielectric Barrier Discharge (DBD) on Mouse and Histological Evaluation of the Plasma-Treated Tissue. Plasma Processes and Polymers 8(3), 246–255 (2011)

    Google Scholar 

  68. Vandamme, M., et al.: Antitumor Effect of Plasma Treatment on U87 Glioma Xenografts: Preliminary Results. Plasma Processes and Polymers 7(3–4), 264–273 (2010)

    Google Scholar 

  69. Keidar, M., et al.: Cold atmospheric plasma in cancer therapy. Physics of Plasmas 20(5), 057101 (2013)

    Google Scholar 

  70. Walk, R.M., et al.: Cold atmospheric plasma for the ablative treatment of neuroblastoma. Journal of Pediatric Surgery 48(1), 67–73 (2013)

    Google Scholar 

  71. Yajima, I., et al.: Non-equilibrium atmospheric pressure plasmas modulate cell cycle-related gene expressions in melanocytic tumors of RET-transgenic mice. Experimental Dermatology 23(6), 424–425 (2014)

    Google Scholar 

  72. Vargo, J.J.: Clinical applications of the argon plasma coagulator. Gastrointestinal Endoscopy 59(1), 81–88 (2004)

    Google Scholar 

  73. Canady, J., et al.: Characterization of Plasma Parameters and Tissue Injury Produced by Plasma Electrosurgical Systems. Plasma Medicine 3(4), 279–289

    Google Scholar 

  74. Stoffels, E., Kieft, I.E., Sladek, R.E.J.: Superficial treatment of mammalian cells using plasma needle. Journal of Physics D: Applied Physics 36(23), 2908–2913 (2003)

    Google Scholar 

  75. Fridman, G., et al.: Blood coagulation and living tissue sterilization by floating-electrode dielectric barrier discharge in air. Plasma Chemistry and Plasma Processing 26(4), 425–442 (2006)

    Google Scholar 

  76. Heinlin, J., et al.: Plasma medicine: possible applications in dermatology. Journal Der Deutschen Dermatologischen Gesellschaft 8(12), 968–976 (2010)

    Google Scholar 

  77. Ahn, H.J., et al.: Atmospheric-Pressure Plasma Jet Induces Apoptosis Involving Mitochondria via Generation of Free Radicals. Plos One 6(11), e28154 (2011)

    Google Scholar 

  78. Yan, X., et al.: On the Mechanism of Plasma Inducing Cell Apoptosis. IEEE Transactions on Plasma Science 38(9), 2451–2457 (2010)

    Google Scholar 

  79. Tuhvatulin, A.I., et al.: Non-thermal Plasma Causes p53-Dependent Apoptosis in Human Colon Carcinoma Cells. Acta Naturae 4(3), 82–87 (2012)

    Google Scholar 

  80. Martin, P.: Wound healing - Aiming for perfect skin regeneration. Science 276(5309), 75–81 (1997)

    Google Scholar 

  81. Guo, S., DiPietro, L.A.: Factors Affecting Wound Healing. Journal of Dental Research 89(3), 219–229 (2010)

    Google Scholar 

  82. Lloyd, G., et al.: Gas Plasma: Medical Uses and Developments in Wound Care. Plasma Processes and Polymers 7(3–4), 194–211 (2010)

    Google Scholar 

  83. Tirakotai, W., et al.: Argon plasma coagulation (APC) in brain tumor surgery: experimental study and clinical experiences. Clinical Neuropathology 23(6), 257–261 (2004)

    Google Scholar 

  84. Kalghatgi, S.U., et al.: Mechanism of blood coagulation by nonthermal atmospheric pressure dielectric barrier discharge plasma. IEEE Transactions on Plasma Science 35(5), 1559–1566 (2007)

    Google Scholar 

  85. Choi, J., et al.: 900-MHz Nonthermal Atmospheric Pressure Plasma Jet for Biomedical Applications. Plasma Processes and Polymers 7(3–4), 258–263 (2010)

    Google Scholar 

  86. Janani, E., Ale-Ebrahim, M., Mortazavi, P.: In Vitro and in Vivo studies of the Effects of Cold Argon Plasma on Decreasing the Coagulation Time. Iranian Journal of Medical Physics 2013(10), 31–36 (2013)

    Google Scholar 

  87. Eming, S.A., Krieg, T., Davidson, J.M.: Inflammation in wound repair: Molecular and cellular mechanisms. Journal of Investigative Dermatology 127(3), 514–525 (2007)

    Google Scholar 

  88. Harding, K.G., Moore, K., Phillips, T.J.: Wound chronicity and fibroblast senescence–implications for treatment. Int. Wound. J. 2(4), 364–368 (2005)

    Google Scholar 

  89. Edwards, R., Harding, K.G.: Bacteria and wound healing. Current Opinion in Infectious Diseases 17, 91–96 (2004)

    Google Scholar 

  90. Robson, M.C., Heggers, J.P.: Delayed wound closures based on bacterial counts. Journal of Surgical Oncology 2(4), 379–383 (1970)

    Google Scholar 

  91. Bowler, P.G., Duerden, B.I., Armstrong, D.G.: Wound microbiology and associated approaches to wound management. Clinical Microbiology Reviews 14(2), 244–269 (2001)

    Google Scholar 

  92. Laroussi, M., Alexeff, I., Kang, W.L.: Biological decontamination by nonthermal plasmas. IEEE Transactions on Plasma Science 28(1), 184–188 (2000)

    Google Scholar 

  93. Herrmann, H.W., et al.: Decontamination of chemical and biological warfare, (CBW) agents using an atmospheric pressure plasma jet (APPJ). Physics of Plasmas 6(5), 2284–2289 (1999)

    Google Scholar 

  94. Ermolaeva, S.A., et al.: Bactericidal effects of non-thermal argon plasma in vitro, in biofilms and in the animal model of infected wounds. Journal of Medical Microbiology 60(1), 75–83 (2011)

    MathSciNet  Google Scholar 

  95. Daeschlein, G., et al.: Skin and wound decontamination of multidrug-resistant bacteria by cold atmospheric plasma coagulation. Journal Der Deutschen Dermatologischen Gesellschaft 13(2), 143–150 (2015)

    Google Scholar 

  96. Fridman, G., et al.: Comparison of direct and indirect effects of non-thermal atmospheric-pressure plasma on bacteria. Plasma Processes and Polymers 4(4), 370–375 (2007)

    Google Scholar 

  97. Daeschlein, G., et al.: Antibacterial Activity of an Atmospheric Pressure Plasma Jet Against Relevant Wound Pathogens in vitro on a Simulated Wound Environment. Plasma Processes and Polymers 7(3–4), 224–230 (2010)

    Google Scholar 

  98. Kalghatgi, S., et al.: Endothelial Cell Proliferation is Enhanced by Low Dose Non-Thermal Plasma Through Fibroblast Growth Factor-2 Release. Annals of Biomedical Engineering 38(3), 748–757 (2010)

    Google Scholar 

  99. Arjunan, K.P., et al.: Non-thermal dielectric barrier discharge plasma induces angiogenesis through reactive oxygen species. Journal of the Royal Society Interface 9(66), 147–157 (2012)

    Google Scholar 

  100. Arndt, S., et al.: Cold Atmospheric Plasma (CAP) Changes Gene Expression of Key Molecules of the Wound Healing Machinery and Improves Wound Healing In Vitro and In Vivo. Plos One 8(11) (2013)

    Google Scholar 

  101. Wende, K., et al.: Distinctive Activity of a Nonthermal Atmospheric-Pressure Plasma Jet on Eukaryotic and Prokaryotic Cells in a Cocultivation Approach of Keratinocytes and Microorganisms. IEEE Transactions on Plasma Science 38(9), 2479–2485 (2010)

    Google Scholar 

  102. Isbary, G., et al.: A first prospective randomized controlled trial to decrease bacterial load using cold atmospheric argon plasma on chronic wounds in patients. British Journal of Dermatology 163(1), 78–82 (2010)

    Google Scholar 

  103. Mertens, N., et al.: Low temperature plasma treatment of human tissue. In: 2nd International Conference on Plasma Medicine, San Antonio, TX, USA (2009)

    Google Scholar 

  104. Lee, D.H., et al.: Suppression of scar formation in a murine burn wound model by the application of non-thermal plasma. Applied Physics Letters 99(20), 203701 (2011)

    Google Scholar 

  105. Grigoras, C., et al.: Influence of Atmospheric Pressure Plasma Treatment on Epithelial Regeneration Process. Romanian Journal of Physics 56, 54–61 (2011)

    Google Scholar 

  106. Luo, J.D., Chen, A.F.: Nitric oxide: a newly discovered function on wound healing. Acta Pharmacologica Sinica 26(3), 259–264 (2005)

    Google Scholar 

  107. Shekhter, A.B., et al.: Beneficial effect of gaseous nitric oxide on the healing of skin wounds. Nitric Oxide-Biology and Chemistry 12(4), 210–219 (2005)

    Google Scholar 

  108. Soneja, A., Drews, M., Malinski, T.: Role of nitric oxide, nitroxidative and oxidative stress in wound healing. Pharmacological Reports 57, 108–119 (2005)

    Google Scholar 

  109. Witte, M.B., Barbul, A.: Role of nitric oxide in wound repair. American Journal of Surgery 183(4), 406–412 (2002)

    Google Scholar 

  110. Gamou, S., Shimizu, N.: Hydrogen-Peroxide Preferentially Enhances the Tyrosine Phosphorylation of Epidermal Growth-Factor Receptor. FEBS Letters 357(2), 161–164 (1995)

    Google Scholar 

  111. Gordillo, G.M., Sen, C.K.: Revisiting the essential role of oxygen in wound healing. American Journal of Surgery 186(3), 259–263 (2003)

    Google Scholar 

  112. Joyce, J.A., Pollard, J.W.: Microenvironmental regulation of metastasis. Nature Reviews Cancer 9(4), 239–252 (2009)

    Google Scholar 

  113. Cairns, R.A., Harris, I.S., Mak, T.W.: Regulation of cancer cell metabolism. Nature Reviews Cancer 11(2), 85–95 (2011)

    Google Scholar 

  114. Trachootham, D., Alexandre, J., Huang, P.: Targeting cancer cells by ROS-mediated mechanisms: a radical therapeutic approach? Nature Reviews Drug Discovery 8(7), 579–591 (2009)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jennifer H. Shin .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Gweon, B., Kim, K., Choe, W., Shin, J.H. (2016). Therapeutic Uses of Atmospheric Pressure Plasma: Cancer and Wound. In: Jo, H., Jun, HW., Shin, J., Lee, S. (eds) Biomedical Engineering: Frontier Research and Converging Technologies. Biosystems & Biorobotics, vol 9. Springer, Cham. https://doi.org/10.1007/978-3-319-21813-7_15

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-21813-7_15

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-21812-0

  • Online ISBN: 978-3-319-21813-7

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics