Skip to main content

Rooted Cycle Bases

  • Conference paper
  • First Online:
Algorithms and Data Structures (WADS 2015)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 9214))

Included in the following conference series:

  • 1692 Accesses

Abstract

A cycle basis in an undirected graph is a minimal set of simple cycles whose symmetric differences include all Eulerian subgraphs of the given graph. We define a rooted cycle basis to be a cycle basis in which all cycles contain a specified root edge, and we investigate the algorithmic problem of constructing rooted cycle bases. We show that a given graph has a rooted cycle basis if and only if the root edge belongs to its 2-core and the 2-core is 2-vertex-connected, and that constructing such a basis can be performed efficiently. We show that in an unweighted or positively weighted graph, it is possible to find the minimum weight rooted cycle basis in polynomial time. Additionally, we show that it is \(\mathsf {NP}\)-complete to find a fundamental rooted cycle basis (a rooted cycle basis in which each cycle is formed by combining paths in a fixed spanning tree with a single additional edge) but that the problem can be solved by a fixed-parameter-tractable algorithm when parameterized by clique-width.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Liebchen, C.: Periodic timetable optimization in public transport. Operations Research Proceedings 2006, 29–36 (2007)

    Google Scholar 

  2. Boulinier, C., Petit, F., Villain, V.: When graph theory helps self-stabilization. In: Proc. 23rd ACM Symp. on Principles of Distributed Computing (PODC 2004), pp. 150–159 (2004)

    Google Scholar 

  3. Aguiar, D., Istrail, S.: HapCompass: A fast cycle basis algorithm for accurate haplotype assembly of sequence data. J. Computational Biology 19(6), 577–590 (2012)

    Article  MathSciNet  Google Scholar 

  4. Lemieux, S., Major, F.: Automated extraction and classification of RNA tertiary structure cyclic motifs. Nucleic Acids Research 34(8), 2340–2346 (2006)

    Article  Google Scholar 

  5. Kaveh, A.: Improved cycle bases for the flexibility analysis of structures. Comput. Methods Appl. Mech. Engrg. 9(3), 267–272 (1976)

    Article  MathSciNet  MATH  Google Scholar 

  6. Kecskeméthy, A., Krupp, T., Hiller, M.: Symbolic processing of multiloop mechanism dynamics using closed-form kinematics solutions. Multibody System Dynamics 1(1), 23–45 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  7. Parrish, B.E., McCarty, J.M., Eppstein, D.: Automated generation of linkage loop equations for planar one degree-of-freedom linkages, demonstrated up to 8-bar. J. Mechanisms and Robotics 7(1), 011006 (2015)

    Article  MATH  Google Scholar 

  8. Lee, A., Streinu, I.: Pebble game algorithms and sparse graphs. Discrete Math. 308(8), 1425–1437 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  9. Amaldi, E., Iuliano, C., Rizzi, R.: Efficient deterministic algorithms for finding a minimum cycle basis in undirected graphs. In: Eisenbrand, F., Shepherd, F.B. (eds.) IPCO 2010. LNCS, vol. 6080, pp. 397–410. Springer, Heidelberg (2010)

    Chapter  Google Scholar 

  10. Horton, J.D.: A polynomial-time algorithm to find the shortest cycle basis of a graph. SIAM J. Comput. 16(2), 358–366 (1987)

    Article  MathSciNet  MATH  Google Scholar 

  11. Mehlhorn, K., Michail, D.: Implementing minimum cycle basis algorithms. ACM J. Exp. Algorithmics 11 (2006)

    Google Scholar 

  12. Kavitha, T., Liebchen, C., Mehlhorn, K., Michail, D., Rizzi, R., Ueckerdt, T., Zweig, K.A.: Cycle bases in graphs: Characterization, algorithms, complexity, and applications. Comput. Sci. Rev. 3(4), 199–243 (2009)

    Article  MATH  Google Scholar 

  13. Rizzi, R.: Minimum weakly fundamental cycle bases are hard to find. Algorithmica 53(3), 402–424 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  14. Tutte, W.T.: On the 2-factors of bicubic graphs. Discrete Math. 1(2), 203–208 (1971)

    Article  MathSciNet  MATH  Google Scholar 

  15. Welsh, D.J.A.: Matroid Theory. Dover (2010)

    Google Scholar 

  16. Whitney, H.: Non-separable and planar graphs. Trans. Amer. Math. Soc. 34(2), 339–362 (1932)

    Article  MathSciNet  Google Scholar 

  17. Lovász, L.: Computing ears and branchings in parallel. In: Proc. 26th Symp. Foundations of Computer Science (FOCS 1985), pp. 464–467 (1985)

    Google Scholar 

  18. Tarjan, R.: Depth-first search and linear graph algorithms. SIAM J. Comput. 1(2), 146–160 (1972)

    Article  MathSciNet  MATH  Google Scholar 

  19. Ramachandran, V.: Parallel open ear decomposition with applications to graph biconnectivity and triconnectivity. In: Reif, J.H. (ed.) Synthesis of Parallel Algorithms. Morgan Kaufmann, pp. 276–340 (1993)

    Google Scholar 

  20. Elkin, M., Liebchen, C., Rizzi, R.: New length bounds for cycle bases. Inform. Process. Lett. 104(5), 186–193 (2007)

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David Eppstein .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this paper

Cite this paper

Eppstein, D., McCarthy, J.M., Parrish, B.E. (2015). Rooted Cycle Bases. In: Dehne, F., Sack, JR., Stege, U. (eds) Algorithms and Data Structures. WADS 2015. Lecture Notes in Computer Science(), vol 9214. Springer, Cham. https://doi.org/10.1007/978-3-319-21840-3_28

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-21840-3_28

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-21839-7

  • Online ISBN: 978-3-319-21840-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics