Skip to main content
  • 1547 Accesses

Abstract

The initial description of clinical radiation biology arose in an era where most external beam treatments comprised multiple fractions of radiation delivered over a protracted period of time. The increasing adoption of image guided techniques has permitted the delivery of much larger single doses over shorter time periods. In this chapter we discuss those biological factors thought to impact clinical outcome, repair, reoxygenation, redistribution, repopulation, and radiosensitivity and compare and contrast their relevance in the era of hypofractionated treatment.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Al-Hajj M, Wicha MS, Benito-Hernandez A, Morrison SJ, Clarke MF. Prospective identification of tumorigenic breast cancer cells. Proc Natl Acad Sci U S A. 2003;100:3983–8.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Bao S, Wu Q, McLendon RE, Hao Y, Shi Q, et al. Glioma stem cells promote radioresistance by preferential activation of the DNA damage response. Nature. 2006;444:756–60.

    Article  CAS  PubMed  Google Scholar 

  • Chan N, Koritzinsky M, Zhao H, Bindra R, Glazer PM, et al. Chronic hypoxia decreases synthesis of homologous recombination proteins to offset chemoresistance and radioresistance. Cancer Res. 2008;68:605–14.

    Article  CAS  PubMed  Google Scholar 

  • Deacon J, Peckham MJ, Steel GG. The radioresponsiveness of human tumours and the initial slope of the cell survival curve. Radiother Oncol. 1984;2:317–23.

    Article  CAS  PubMed  Google Scholar 

  • Fuks Z, Kolesnick R. Engaging the vascular component of the tumor response. Cancer Cell. 2005;8:89–91.

    Article  CAS  PubMed  Google Scholar 

  • Guerrero M, Li XA. Extending the linear-quadratic model for large fraction doses pertinent to stereotactic radiotherapy. Phys Med Biol. 2004;49:4825–35.

    Article  CAS  PubMed  Google Scholar 

  • Hammond EM, Dorie MJ, Giaccia AJ. ATR/ATM targets are phosphorylated by ATR in response to hypoxia and ATM in response to reoxygenation. J Biol Chem. 2003;278:12207–13.

    Article  CAS  PubMed  Google Scholar 

  • Hockel M, Schlenger K, Aral B, Mitze M, Schaffer U, et al. Association between tumor hypoxia and malignant progression in advanced cancer of the uterine cervix. Cancer Res. 1996;56:4509–15.

    CAS  PubMed  Google Scholar 

  • Jackson SP, Bartek J. The DNA-damage response in human biology and disease. Nature. 2009;461:1071–8.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Malaise EP, Fertil B, Deschavanne PJ, Chavaudra N, Brock WA. Initial slope of radiation survival curves is characteristic of the origin of primary and established cultures of human tumor cells and fibroblasts. Radiat Res. 1987;111:319–33.

    Article  CAS  PubMed  Google Scholar 

  • Park C, Papiez L, Zhang S, Story M, Timmerman RD. Universal survival curve and single fraction equivalent dose: useful tools in understanding potency of ablative radiotherapy. Int J Radiat Oncol Biol Phys. 2008;70:847–52.

    Article  PubMed  Google Scholar 

  • Reddy SB, Williamson SK. Tirapazamine: a novel agent targeting hypoxic tumor cells. Expert Opin Investig Drugs. 2009;18:77–87.

    Article  CAS  PubMed  Google Scholar 

  • Rischin D, Peters LJ, O’Sullivan B, Giralt J, Fisher R, et al. Tirapazamine, cisplatin, and radiation versus cisplatin and radiation for advanced squamous cell carcinoma of the head and neck (TROG 02.02, HeadSTART): a phase III trial of the Trans-Tasman Radiation Oncology Group. J Clin Oncol. 2010;28:2989–95.

    Article  CAS  PubMed  Google Scholar 

  • Singh SK, Hawkins C, Clarke ID, Squire JA, Bayani J, et al. Identification of human brain tumour initiating cells. Nature. 2004;432:396–401.

    Article  CAS  PubMed  Google Scholar 

  • Shibamoto Y, Otsuka S, Iwata H, Sugie C, Ogino H, et al. Radiobiological evaluation of the radiation dose as used in high-precision radiotherapy: effect of prolonged delivery time and applicability of the linear-quadratic model. J Radiat Res. 2012;53:1–9.

    Article  PubMed  Google Scholar 

  • Surova O, Zhivotovsky B. Various modes of cell death induced by DNA damage. Oncogene. 2013;32:3789–97.

    Article  CAS  PubMed  Google Scholar 

  • Valdiglesias V, Giunta S, Fenech M, Neri M, Bonassi S. gammaH2AX as a marker of DNA double strand breaks and genomic instability in human population studies. Mutat Res. 2013;753:24–40.

    Article  CAS  PubMed  Google Scholar 

  • Withers HR. Biologic basis for altered fractionation schemes. Cancer. 1985;55:2086–95.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andrew Vaughan .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Vaughan, A., Rao, S.S.D. (2016). Radiobiology of Stereotactic Radiosurgery and Stereotactic Body Radiotherapy. In: Sethi, R., Barani, I., Larson, D., Roach, III, M. (eds) Handbook of Evidence-Based Stereotactic Radiosurgery and Stereotactic Body Radiotherapy. Springer, Cham. https://doi.org/10.1007/978-3-319-21897-7_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-21897-7_2

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-21896-0

  • Online ISBN: 978-3-319-21897-7

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics