Skip to main content

The Influence of Cellular Automaton Topology on the Opinion Formation

  • Conference paper
  • First Online:
Parallel Computing Technologies (PaCT 2015)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 9251))

Included in the following conference series:

Abstract

We use the Cellular Automata to study the process of opinion formation in the community. The crucial property characterizing the existing models is the method of updating the system. In the paper we choose the randomized Glauber method and concentrate on the influence of topology of the system on the opinion understood as the support for specific real parties. We study also the relation between the topology and the parameters of the Glauber method. We propose to perform the analysis of the results based on the Fourier transform. This form of presentation discloses some interesting properties of both real-world and simulation results.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Clifford, P., Sudbury, A.: A model for spatial conflict. Biometrika 60, 581–588 (1973)

    Article  MathSciNet  MATH  Google Scholar 

  2. Galam, S.: Minority opinion spreading in random geometry. Eur. Phys. J. B 25, 403–406 (2002)

    Google Scholar 

  3. Sznajd-Weron, K., Sznajd, J.: Opinion evolution in closed community. Int. J. Mod. Phys. C 11, 1157 (2000)

    Article  Google Scholar 

  4. Grabowski, A., Kosinski, R.: Ising-based model of opinion formation in a complex network of interpersonal interactions. Physica A 361, 651–664 (2006)

    Article  Google Scholar 

  5. Iniguez, G., Barrio, R.A., Kertesz, J., Kaski, K.K.: Modelling opinion formation driven communities in social networks. Comput. Phys. Commun. 182, 1866–1869 (2011). Computer Physics Communications Special Edition for Conference on Computational Physics Trondheim, Norway, 23–26 June 2010

    Article  MathSciNet  Google Scholar 

  6. Bordogna, C.M., Albano, E.V.: Dynamic behavior of a social model for opinion formation. Phys. Rev. E 76, 061125 (2007)

    Article  Google Scholar 

  7. Schmittmann, B., Mukhopadhyay, A.: Opinion formation on adaptive networks with intensive average degree. Phys. Rev. E 82, 066104 (2010)

    Article  Google Scholar 

  8. Krause, S.M., Bornholdt, S.: Opinion formation model for markets with a social temperature and fear. Phys. Rev. E 86, 056106 (2012)

    Article  Google Scholar 

  9. Sobkowicz, P., Kaschesky, M., Bouchard, G.: Opinion formation in the social web: agent-based simulations of opinion convergence and divergence. In: Cao, L., Bazzan, A.L.C., Symeonidis, A.L., Gorodetsky, V.I., Weiss, G., Yu, P.S. (eds.) ADMI 2011. LNCS, vol. 7103, pp. 288–303. Springer, Heidelberg (2012)

    Chapter  Google Scholar 

  10. Prettejohn, B.J., McDonnell, M.D.: Effect of network topology in opinion formation models. In: Guttmann, C., Dignum, F., Georgeff, M. (eds.) CARE 2009/2010. LNCS, vol. 6066, pp. 114–124. Springer, Heidelberg (2011)

    Chapter  Google Scholar 

  11. Hammer, R.J., Moore, T.W., Finley, P.D., Glass, R.J.: The role of community structure in opinion cluster formation. In: Glass, K., Colbaugh, R., Ormerod, P., Tsao, J. (eds.) Complex 2012. LNICST, vol. 126, pp. 127–139. Springer, Heidelberg (2013)

    Chapter  Google Scholar 

  12. Gwizdałła, T.M.: The dynamics of disproportionality index for cellular automata based sociophysical models. In: Sirakoulis, G.C., Bandini, S. (eds.) ACRI 2012. LNCS, vol. 7495, pp. 91–100. Springer, Heidelberg (2012)

    Chapter  Google Scholar 

  13. Sendra, N., Gwizdałła, T.M.: Sznajd model with memory. In: Was, J., Sirakoulis, G.C., Bandini, S. (eds.) ACRI 2014. LNCS, vol. 8751, pp. 349–356. Springer, Heidelberg (2014)

    Google Scholar 

  14. Stauffer, D., Sousa, A.O., de Oliveira, S.: Generalization to square lattice of Sznajd sociophysics model. Int. J. Mod. Phys. C 11, 1239–1245 (2000)

    Article  Google Scholar 

  15. Barabasi, A.L., Albert, R.: Emergence of scaling in random networks. Science 286, 509–512 (1999)

    Article  MathSciNet  Google Scholar 

  16. Schnettler, S.: A structured overview of 50 years of small-world research. Soc. Netw. 31, 165–178 (2009)

    Article  Google Scholar 

  17. Lattanzi, S., Panconesi, A., Sivakumar, D.: Milgram-routing in social networks. In: Srinivasan, S., Ramamritham, K., Kumar, A., Ravindra, M.P., Bertino, E., Kumar, R. (eds.) Proceedings of the 20th International Conference on WWW, pp. 725–734. ACM (2011)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tomasz M. Gwizdałła .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this paper

Cite this paper

Gwizdałła, T.M. (2015). The Influence of Cellular Automaton Topology on the Opinion Formation. In: Malyshkin, V. (eds) Parallel Computing Technologies. PaCT 2015. Lecture Notes in Computer Science(), vol 9251. Springer, Cham. https://doi.org/10.1007/978-3-319-21909-7_17

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-21909-7_17

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-21908-0

  • Online ISBN: 978-3-319-21909-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics