Skip to main content

microRNAs Distinctively Regulate Vascular Smooth Muscle and Endothelial Cells: Functional Implications in Angiogenesis, Atherosclerosis, and In-Stent Restenosis

  • Chapter
microRNA: Basic Science

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 887))

Abstract

Endothelial cells (EC) and vascular smooth muscle cells (VSMC) are the main cell types within the vasculature. We describe here how microRNAs (miRs)—noncoding RNAs that can regulate gene expression via translational repression and/or post-transcriptional degradation—distinctively modulate EC and VSMC function in physiology and disease. In particular, the specific roles of miR-126 and miR-143/145, master regulators of EC and VSMC function, respectively, are deeply explored. We also describe the mechanistic role of miRs in the regulation of the pathophysiology of key cardiovascular processes including angiogenesis, atherosclerosis, and in-stent restenosis post-angioplasty. Drawbacks of currently available therapeutic options are discussed, pointing at the challenges and potential clinical opportunities provided by miR-based treatments.

The original version of this chapter was revised. The erratum to this chapter is available at: DOI 10.1007/978-3-319-22380-3_13

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Iaccarino G, Ciccarelli M, Sorriento D, Cipolletta E, Cerullo V, Iovino GL, et al. AKT participates in endothelial dysfunction in hypertension. Circulation. 2004;109:2587–93.

    Article  CAS  PubMed  Google Scholar 

  2. Santulli G, Wronska A, Uryu K, Diacovo TG, Gao M, Marx SO, et al. A selective microRNA-based strategy inhibits restenosis while preserving endothelial function. J Clin Invest. 2014;124: 4102–14.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Cimpean A, Ribatti D, Raica M. A historical appraisal of angiogenesis assays since Judah Folkman and before…. In: Santulli G, editor. Angiogenesis: insights from a systematic overview. New York: Nova Science; 2013. p. 31–50.

    Google Scholar 

  4. Santulli G, Cipolletta E, Sorriento D, Del Giudice C, Anastasio A, Monaco S, et al. CaMK4 gene deletion induces hypertension. J Am Heart Assoc. 2012;1, e001081.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  5. Santulli G, Trimarco B, Iaccarino G. G-protein-coupled receptor kinase 2 and hypertension: molecular insights and pathophysiological mechanisms. High Blood Press Cardiovasc Prev. 2013;20:5–12.

    Article  CAS  PubMed  Google Scholar 

  6. Sorriento D, Ciccarelli M, Santulli G, Campanile A, Altobelli GG, Cimini V, et al. The G-protein-coupled receptor kinase 5 inhibits NFkappaB transcriptional activity by inducing nuclear accumulation of IkappaB alpha. Proc Natl Acad Sci U S A. 2008;105:17818–23.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Santulli G. Angiopoietin-like proteins: a comprehensive look. Front Endocrinol. 2014;5:4.

    Article  Google Scholar 

  8. Santulli G. β-blockers in diabetic patients with heart failure. JAMA Intern Med. 2015; 175(4):657.

    Article  PubMed  Google Scholar 

  9. Santulli G. Effects of low-carbohydrate and low-fat diets. Ann Intern Med. 2015;162:392.

    Article  PubMed  Google Scholar 

  10. Perino A, Ghigo A, Ferrero E, Morello F, Santulli G, Baillie GS, et al. Integrating cardiac PIP(3) and cAMP signaling through a PKA anchoring function of p110gamma. Mol Cell. 2011;42: 84–95.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Santulli G. Adrenal signaling in heart failure: something more than a distant ship’s smoke on the horizon. Hypertension. 2014;63:215–6.

    Article  CAS  PubMed  Google Scholar 

  12. van Lieshout JJ, Wieling W, Karemaker JM, Eckberg DL. The vasovagal response. Clin Sci. 1991;81:575–86.

    Article  PubMed  Google Scholar 

  13. Santulli G, Ciccarelli M, Trimarco B, Iaccarino G. Physical activity ameliorates cardiovascular health in elderly subjects: the functional role of the beta adrenergic system. Front Physiol. 2013;4:209.

    Article  PubMed  PubMed Central  Google Scholar 

  14. Wronska A, Kurkowska-Jastrzebska I, Santulli G. Application of microRNAs in diagnosis and treatment of cardiovascular disease. Acta Physiol (Oxf). 2015;213:60–83.

    Article  CAS  Google Scholar 

  15. Kozomara A, Griffiths-Jones S. miRBase: annotating high confidence microRNAs using deep sequencing data. Nucleic Acids Res. 2014;42:D68–73.

    Article  CAS  PubMed  Google Scholar 

  16. Anderson DM, Anderson KM, Chang CL, Makarewich CA, Nelson BR, McAnally JR, et al. A micropeptide encoded by a putative long noncoding RNA regulates muscle performance. Cell. 2015;160:595–606.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Andrews SJ, Rothnagel JA. Emerging evidence for functional peptides encoded by short open reading frames. Nat Rev Genet. 2014;15:193–204.

    Article  CAS  PubMed  Google Scholar 

  18. Carninci P, Kasukawa T, Katayama S, Gough J, Frith MC, Maeda N, et al. The transcriptional landscape of the mammalian genome. Science. 2005;309:1559–63.

    Article  CAS  PubMed  Google Scholar 

  19. Lee LJ, Hughes TR, Frey BJ. How many new genes are there? Science. 2006;311:1709–11; author reply-1711.

    Article  CAS  PubMed  Google Scholar 

  20. Santulli G, Ciccarelli M, Palumbo G, Campanile A, Galasso G, Ziaco B, et al. In vivo properties of the proangiogenic peptide QK. J Transl Med. 2009;7:41.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  21. Ciccarelli M, Santulli G, Campanile A, Galasso G, Cervero P, Altobelli GG, et al. Endothelial alpha1-adrenoceptors regulate neo-angiogenesis. Br J Pharmacol. 2008;153:936–46.

    Article  CAS  PubMed  Google Scholar 

  22. Santulli G, Basilicata MF, De Simone M, Del Giudice C, Anastasio A, Sorriento D, et al. Evaluation of the anti-angiogenic properties of the new selective alphaVbeta3 integrin antagonist RGDechiHCit. J Transl Med. 2011;9:7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Berthod F. Fibroblasts and endothelial cells: the basic angiogenic unit. In: Santulli G, editor. Angiogenesis: insights from a systematic overview. New York: Nova Science; 2013. p. 145–58.

    Google Scholar 

  24. Yamamoto S, Niida S, Azuma E, Yanagibashi T, Muramatsu M, Huang TT, et al. Inflammation-induced endothelial cell-derived extracellular vesicles modulate the cellular status of pericytes. Sci Rep. 2015;5:8505.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Matarese A, Santulli G. Angiogenesis in chronic obstructive pulmonary disease: a translational appraisal. Transl Med UniSa. 2012;3:49–56.

    PubMed  PubMed Central  Google Scholar 

  26. Cordes KR, Sheehy NT, White MP, Berry EC, Morton SU, Muth AN, et al. miR-145 and miR-143 regulate smooth muscle cell fate and plasticity. Nature. 2009;460:705–10.

    CAS  PubMed  PubMed Central  Google Scholar 

  27. Iio A, Nakagawa Y, Hirata I, Naoe T, Akao Y. Identification of non-coding RNAs embracing microRNA-143/145 cluster. Mol Cancer. 2010;9:136.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  28. Boucher JM, Peterson SM, Urs S, Zhang C, Liaw L. The miR-143/145 cluster is a novel transcriptional target of Jagged-1/Notch signaling in vascular smooth muscle cells. J Biol Chem. 2011;286:28312–21.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Davis-Dusenbery BN, Chan MC, Reno KE, Weisman AS, Layne MD, Lagna G, et al. Down-regulation of Kruppel-like factor-4 (KLF4) by microRNA-143/145 is critical for modulation of vascular smooth muscle cell phenotype by transforming growth factor-beta and bone morphogenetic protein 4. J Biol Chem. 2011;286:28097–110.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Batliner J, Buehrer E, Fey MF, Tschan MP. Inhibition of the miR-143/145 cluster attenuated neutrophil differentiation of APL cells. Leuk Res. 2012;36:237–40.

    Article  CAS  PubMed  Google Scholar 

  31. Iio A, Takagi T, Miki K, Naoe T, Nakayama A, Akao Y. DDX6 post-transcriptionally down-regulates miR-143/145 expression through host gene NCR143/145 in cancer cells. Biochim Biophys Acta. 1829;2013:1102–10.

    Google Scholar 

  32. Medrano S, Sequeira-Lopez ML, Gomez RA. Deletion of the miR-143/145 cluster leads to hydronephrosis in mice. Am J Pathol. 2014;184:3226–38.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Dahan D, Ekman M, Larsson-Callerfelt AK, Turczynska K, Boettger T, Braun T, et al. Induction of angiotensin-converting enzyme after miR-143/145 deletion is critical for impaired smooth muscle contractility. Am J Physiol Cell Physiol. 2014;307:C1093–101.

    Article  CAS  PubMed  Google Scholar 

  34. Kent OA, McCall MN, Cornish TC, Halushka MK. Lessons from miR-143/145: the importance of cell-type localization of miRNAs. Nucleic Acids Res. 2014;42:7528–38.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Chivukula RR, Shi G, Acharya A, Mills EW, Zeitels LR, Anandam JL, et al. An essential mesenchymal function for miR-143/145 in intestinal epithelial regeneration. Cell. 2014;157: 1104–16.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Kojima S, Enokida H, Yoshino H, Itesako T, Chiyomaru T, Kinoshita T, et al. The tumor-suppressive microRNA-143/145 cluster inhibits cell migration and invasion by targeting GOLM1 in prostate cancer. J Hum Genet. 2014;59:78–87.

    Article  CAS  PubMed  Google Scholar 

  37. Zhao W, Zheng XL, Peng DQ, Zhao SP. Myocyte enhancer factor 2A regulates hydrogen peroxide-induced senescence of vascular smooth muscle cells via microRNA-143. J Cell Physiol. 2015;230:2202–11.

    Article  CAS  PubMed  Google Scholar 

  38. Bhattachariya A, Dahan D, Ekman M, Boettger T, Braun T, Sward K, et al. Spontaneous activity and stretch-induced contractile differentiation are reduced in vascular smooth muscle of miR-143/145 knockout mice. Acta Physiol (Oxf). 2015. doi:10.1111/apha.12536.

    Google Scholar 

  39. Vengrenyuk Y, Nishi H, Long X, Ouimet M, Savji N, Martinez FO, et al. Cholesterol loading reprograms the MicroRNA-143/145-myocardin axis to convert aortic smooth muscle cells to a dysfunctional macrophage-like phenotype. Arterioscler Thromb Vasc Biol. 2015;35:535–46.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Koo S, Martin G, Toussaint LG. MicroRNA-145 promotes the phenotype of human glioblastoma cells selected for invasion. Anticancer Res. 2015;35:3209–15.

    CAS  PubMed  Google Scholar 

  41. Avgeris M, Mavridis K, Tokas T, Stravodimos K, Fragoulis EG, Scorilas A. Uncovering the clinical utility of miR-143, miR-145 and miR-224 for predicting the survival of bladder cancer patients following treatment. Carcinogenesis. 2015;36:528–37.

    Article  PubMed  Google Scholar 

  42. Riches K, Alshanwani AR, Warburton P, O’Regan DJ, Ball SG, Wood IC, et al. Elevated expression levels of miR-143/5 in saphenous vein smooth muscle cells from patients with Type 2 diabetes drive persistent changes in phenotype and function. J Mol Cell Cardiol. 2014;74: 240–50.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Sala F, Aranda JF, Rotllan N, Ramirez CM, Aryal B, Elia L, et al. MiR-143/145 deficiency attenuates the progression of atherosclerosis in Ldlr-/-mice. Thromb Haemost. 2014;112: 796–802.

    Article  PubMed  PubMed Central  Google Scholar 

  44. Engelhardt S, Leierseder S. Coinciding functions for miR-145 in vascular smooth muscle and cardiac fibroblasts. J Mol Cell Cardiol. 2013;65:105–7.

    Article  CAS  PubMed  Google Scholar 

  45. Boettger T, Beetz N, Kostin S, Schneider J, Kruger M, Hein L, et al. Acquisition of the contractile phenotype by murine arterial smooth muscle cells depends on the Mir143/145 gene cluster. J Clin Invest. 2009;119:2634–47.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Elia L, Quintavalle M, Zhang J, Contu R, Cossu L, Latronico MV, et al. The knockout of miR-143 and -145 alters smooth muscle cell maintenance and vascular homeostasis in mice: correlates with human disease. Cell Death Differ. 2009;16:1590–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Wang D, Chang PS, Wang Z, Sutherland L, Richardson JA, Small E, et al. Activation of cardiac gene expression by myocardin, a transcriptional cofactor for serum response factor. Cell. 2001;105:851–62.

    Article  CAS  PubMed  Google Scholar 

  48. Wang DZ, Li S, Hockemeyer D, Sutherland L, Wang Z, Schratt G, et al. Potentiation of serum response factor activity by a family of myocardin-related transcription factors. Proc Natl Acad Sci U S A. 2002;99:14855–60.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Liu X, Cheng Y, Yang J, Qin S, Chen X, Tang X, et al. Flank sequences of miR-145/143 and their aberrant expression in vascular disease: mechanism and therapeutic application. J Am Heart Assoc. 2013;2, e000407.

    PubMed  PubMed Central  Google Scholar 

  50. Quintavalle M, Elia L, Condorelli G, Courtneidge SA. MicroRNA control of podosome formation in vascular smooth muscle cells in vivo and in vitro. J Cell Biol. 2010;189:13–22.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Climent M, Quintavalle M, Miragoli M, Chen J, Condorelli G, Elia L. TGFbeta triggers miR-143/145 transfer from smooth muscle cells to endothelial cells, thereby modulating vessel stabilization. Circ Res. 2015;116:1753–64.

    Article  CAS  PubMed  Google Scholar 

  52. Thayanithy V, Dickson EL, Steer C, Subramanian S, Lou E. Tumor-stromal cross talk: direct cell-to-cell transfer of oncogenic microRNAs via tunneling nanotubes. Transl Res. 2014;164: 359–65.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Fish JE, Santoro MM, Morton SU, Yu S, Yeh RF, Wythe JD, et al. miR-126 regulates angiogenic signaling and vascular integrity. Dev Cell. 2008;15:272–84.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Guo C, Sah JF, Beard L, Willson JK, Markowitz SD, Guda K. The noncoding RNA, miR-126, suppresses the growth of neoplastic cells by targeting phosphatidylinositol 3-kinase signaling and is frequently lost in colon cancers. Genes Chromosomes Cancer. 2008;47:939–46.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Kuhnert F, Mancuso MR, Hampton J, Stankunas K, Asano T, Chen CZ, et al. Attribution of vascular phenotypes of the murine Egfl7 locus to the microRNA miR-126. Development. 2008;135:3989–93.

    Article  CAS  PubMed  Google Scholar 

  56. Musiyenko A, Bitko V, Barik S. Ectopic expression of miR-126*, an intronic product of the vascular endothelial EGF-like 7 gene, regulates prostein translation and invasiveness of prostate cancer LNCaP cells. J Mol Med (Berl). 2008;86:313–22.

    Article  CAS  Google Scholar 

  57. Wang S, Aurora AB, Johnson BA, Qi X, McAnally J, Hill JA, et al. The endothelial-specific microRNA miR-126 governs vascular integrity and angiogenesis. Dev Cell. 2008;15:261–71.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  58. Zhang J, Du YY, Lin YF, Chen YT, Yang L, Wang HJ, et al. The cell growth suppressor, mir-126, targets IRS-1. Biochem Biophys Res Commun. 2008;377:136–40.

    Article  CAS  PubMed  Google Scholar 

  59. Zhao C, Li Y, Zhang M, Yang Y, Chang L. miR-126 inhibits cell proliferation and induces cell apoptosis of hepatocellular carcinoma cells partially by targeting Sox2. Hum Cell. 2015;28: 91–9.

    Article  CAS  PubMed  Google Scholar 

  60. Khella HW, Scorilas A, Mozes R, Mirham L, Lianidou E, Krylov SN, et al. Low expression of miR-126 is a prognostic marker for metastatic clear cell renal cell carcinoma. Am J Pathol. 2015;185:693–703.

    Article  CAS  PubMed  Google Scholar 

  61. Yang Y, Song KL, Chang H, Chen L. Decreased expression of microRNA-126 is associated with poor prognosis in patients with cervical cancer. Diagn Pathol. 2014;9:220.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  62. Bijkerk R, van Solingen C, de Boer HC, de Vries DK, Monge M, van Oeveren-Rietdijk A, et al. Silencing of miRNA-126 in kidney ischemia reperfusion is associated with elevated SDF-1 levels and mobilization of Sca-1+/Lin- progenitor cells. Microrna. 2014;3:144–9.

    Article  CAS  PubMed  Google Scholar 

  63. Lonvik K, Sorbye SW, Nilsen MN, Paulssen RH. Prognostic value of the MicroRNA regulators dicer and Drosha in non-small-cell lung cancer: co-expression of Drosha and miR-126 predicts poor survival. BMC Clin Pathol. 2014;14:45.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  64. Liu R, Gu J, Jiang P, Zheng Y, Liu X, Jiang X, et al. DNMT1-microRNA126 epigenetic circuit contributes to esophageal squamous cell carcinoma growth via ADAM9-EGFR-AKT signaling. Clin Cancer Res. 2015;21:854–63.

    Article  CAS  PubMed  Google Scholar 

  65. Jiang L, Tao C, He A, He X. Overexpression of miR-126 sensitizes osteosarcoma cells to apoptosis induced by epigallocatechin-3-gallate. World J Surg Oncol. 2014;12:383.

    Article  PubMed  PubMed Central  Google Scholar 

  66. Liu B, Peng XC, Zheng XL, Wang J, Qin YW. MiR-126 restoration down-regulate VEGF and inhibit the growth of lung cancer cell lines in vitro and in vivo. Lung Cancer. 2009;66: 169–75.

    Article  PubMed  Google Scholar 

  67. Feng R, Chen X, Yu Y, Su L, Yu B, Li J, et al. miR-126 functions as a tumour suppressor in human gastric cancer. Cancer Lett. 2010;298:50–63.

    Article  CAS  PubMed  Google Scholar 

  68. Harnprasopwat R, Ha D, Toyoshima T, Lodish H, Tojo A, Kotani A. Alteration of processing induced by a single nucleotide polymorphism in pri-miR-126. Biochem Biophys Res Commun. 2010;399:117–22.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Meister J, Schmidt MH. miR-126 and miR-126*: new players in cancer. ScientificWorldJournal. 2010;10:2090–100.

    Article  CAS  PubMed  Google Scholar 

  70. Oglesby IK, Bray IM, Chotirmall SH, Stallings RL, O’Neill SJ, McElvaney NG, et al. miR-126 is downregulated in cystic fibrosis airway epithelial cells and regulates TOM1 expression. J Immunol. 2010;184:1702–9.

    Article  CAS  PubMed  Google Scholar 

  71. Sun Y, Bai Y, Zhang F, Wang Y, Guo Y, Guo L. miR-126 inhibits non-small cell lung cancer cells proliferation by targeting EGFL7. Biochem Biophys Res Commun. 2010;391:1483–9.

    Article  CAS  PubMed  Google Scholar 

  72. Chen JJ, Zhou SH. Mesenchymal stem cells overexpressing MiR-126 enhance ischemic angiogenesis via the AKT/ERK-related pathway. Cardiol J. 2011;18:675–81.

    Article  PubMed  Google Scholar 

  73. Collison A, Herbert C, Siegle JS, Mattes J, Foster PS, Kumar RK. Altered expression of microRNA in the airway wall in chronic asthma: miR-126 as a potential therapeutic target. BMC Pulm Med. 2011;11:29.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Cui W, Li Q, Feng L, Ding W. MiR-126-3p regulates progesterone receptors and involves development and lactation of mouse mammary gland. Mol Cell Biochem. 2011;355:17–25.

    Article  CAS  PubMed  Google Scholar 

  75. Donnem T, Lonvik K, Eklo K, Berg T, Sorbye SW, Al-Shibli K, et al. Independent and tissue-specific prognostic impact of miR-126 in nonsmall cell lung cancer: coexpression with vascular endothelial growth factor-A predicts poor survival. Cancer. 2011;117:3193–200.

    Article  CAS  PubMed  Google Scholar 

  76. Li XM, Wang AM, Zhang J, Yi H. Down-regulation of miR-126 expression in colorectal cancer and its clinical significance. Med Oncol. 2011;28:1054–7.

    Article  PubMed  CAS  Google Scholar 

  77. Li Z, Chen J. In vitro functional study of miR-126 in leukemia. Methods Mol Biol. 2011;676: 185–95.

    Article  CAS  PubMed  Google Scholar 

  78. Ren G, Kang Y. A one-two punch of miR-126/126* against metastasis. Nat Cell Biol. 2013;15:231–3.

    Article  CAS  PubMed  Google Scholar 

  79. Schmidt Y, Simunovic F, Strassburg S, Pfeifer D, Stark GB, Finkenzeller G. miR-126 regulates platelet-derived growth factor receptor-alpha expression and migration of primary human osteoblasts. Biol Chem. 2015;396:61–70.

    CAS  PubMed  Google Scholar 

  80. Togliatto G, Trombetta A, Dentelli P, Gallo S, Rosso A, Cotogni P, et al. Unacylated ghrelin induces oxidative stress resistance in a glucose intolerance and peripheral artery disease mouse model by restoring endothelial cell miR-126 expression. Diabetes. 2015;64:1370–82.

    Article  CAS  PubMed  Google Scholar 

  81. Miki K, Endo K, Takahashi S, Funakoshi S, Takei I, Katayama S, et al. Efficient detection and purification of cell populations using synthetic microRNA switches. Cell Stem Cell. 2015; 16:699–711.

    Article  CAS  PubMed  Google Scholar 

  82. Feng X, Tan W, Cheng S, Wang H, Ye S, Yu C, et al. Upregulation of microRNA-126 in hepatic stellate cells may affect pathogenesis of liver fibrosis through the NF-kappaB pathway. DNA Cell Biol. 2015;34(7):470–80.

    Article  CAS  PubMed  Google Scholar 

  83. Rohde JH, Weigand JE, Suess B, Dimmeler S. A universal aptamer chimera for the delivery of functional microRNA-126. Nucleic Acid Ther. 2015;25:141–51.

    Article  CAS  PubMed  Google Scholar 

  84. Shibayama Y, Kondo T, Ohya H, Fujisawa S, Teshima T, Iseki K. Upregulation of microRNA-126-5p is associated with drug resistance to cytarabine and poor prognosis in AML patients. Oncol Rep. 2015;33:2176–82.

    PubMed  PubMed Central  Google Scholar 

  85. Hu J, Zeng L, Huang J, Wang G, Lu H. miR-126 promotes angiogenesis and attenuates inflammation after contusion spinal cord injury in rats. Brain Res. 2015;1608:191–202.

    Article  CAS  PubMed  Google Scholar 

  86. Nakano M, Fukushima Y, Yokota S, Fukami T, Takamiya M, Aoki Y, et al. CYP2A7 pseudogene transcript affects CYP2A6 expression in human liver by acting as a decoy for miR-126. Drug Metab Dispos. 2015;43:703–12.

    Article  CAS  PubMed  Google Scholar 

  87. Meng Q, Wang W, Yu X, Li W, Kong L, Qian A, et al. Upregulation of microRNA-126 contributes to endothelial progenitor cell function in deep vein thrombosis via its target PIK3R2. J Cell Biochem. 2015;116(8):1613–23.

    Article  CAS  PubMed  Google Scholar 

  88. Mocharla P, Briand S, Giannotti G, Dorries C, Jakob P, Paneni F, et al. AngiomiR-126 expression and secretion from circulating CD34(+) and CD14(+) PBMCs: role for proangiogenic effects and alterations in type 2 diabetics. Blood. 2013;121:226–36.

    Article  CAS  PubMed  Google Scholar 

  89. Meng S, Cao JT, Zhang B, Zhou Q, Shen CX, Wang CQ. Downregulation of microRNA-126 in endothelial progenitor cells from diabetes patients, impairs their functional properties, via target gene Spred-1. J Mol Cell Cardiol. 2012;53:64–72.

    Article  CAS  PubMed  Google Scholar 

  90. Prattichizzo F, Giuliani A, Ceka A, Rippo MR, Bonfigli AR, Testa R, et al. Epigenetic mechanisms of endothelial dysfunction in type 2 diabetes. Clin Epigenetics. 2015;7(1):56.

    Article  PubMed  PubMed Central  Google Scholar 

  91. Tian HS, Zhou QG, Shao F. Relationship between arterial atheromatous plaque morphology and platelet-associated miR-126 and miR-223 expressions. Asian Pac J Trop Med. 2015;8:309–14.

    Article  CAS  PubMed  Google Scholar 

  92. Zhang T, Li L, Shang Q, Lv C, Wang C, Su B. Circulating miR-126 is a potential biomarker to predict the onset of type 2 diabetes mellitus in susceptible individuals. Biochem Biophys Res Commun. 2015;463(1–2):60–3.

    Article  CAS  PubMed  Google Scholar 

  93. Endo-Takahashi Y, Negishi Y, Nakamura A, Ukai S, Ooaku K, Oda Y, et al. Systemic delivery of miR-126 by miRNA-loaded bubble liposomes for the treatment of hindlimb ischemia. Sci Rep. 2014;4:3883.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  94. Potus F, Graydon C, Provencher S, Bonnet S. Vascular remodeling process in pulmonary arterial hypertension, with focus on miR-204 and miR-126 (2013 Grover Conference series). Pulm Circ. 2014;4:175–84.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  95. Yamaguchi T, Iijima T, Wakaume R, Takahashi K, Matsumoto H, Nakano D, et al. Underexpression of miR-126 and miR-20b in hereditary and nonhereditary colorectal tumors. Oncology. 2014;87:58–66.

    Article  CAS  PubMed  Google Scholar 

  96. Yan T, Cui K, Huang X, Ding S, Zheng Y, Luo Q, et al. Assessment of therapeutic efficacy of miR-126 with contrast-enhanced ultrasound in preeclampsia rats. Placenta. 2014;35:23–9.

    Article  CAS  PubMed  Google Scholar 

  97. Goerke SM, Kiefer LS, Stark GB, Simunovic F, Finkenzeller G. miR-126 modulates angiogenic growth parameters of peripheral blood endothelial progenitor cells. Biol Chem. 2015; 396:245–52.

    Article  CAS  PubMed  Google Scholar 

  98. Olivieri F, Bonafe M, Spazzafumo L, Gobbi M, Prattichizzo F, Recchioni R, et al. Age- and glycemia-related miR-126-3p levels in plasma and endothelial cells. Aging. 2014;6:771–87.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. McAuley AK, Dirani M, Wang JJ, Connell PP, Lamoureux EL, Hewitt AW. A genetic variant regulating miR-126 is associated with sight threatening diabetic retinopathy. Diab Vasc Dis Res. 2015;12:133–8.

    Article  CAS  PubMed  Google Scholar 

  100. Schwartz SM. Smooth muscle migration in atherosclerosis and restenosis. J Clin Invest. 1997;100:S87–9.

    CAS  PubMed  Google Scholar 

  101. Lagna G, Ku MM, Nguyen PH, Neuman NA, Davis BN, Hata A. Control of phenotypic plasticity of smooth muscle cells by bone morphogenetic protein signaling through the myocardin-related transcription factors. J Biol Chem. 2007;282:37244–55.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Davis BN, Hilyard AC, Lagna G, Hata A. SMAD proteins control DROSHA-mediated microRNA maturation. Nature. 2008;454:56–61.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Leeper NJ, Raiesdana A, Kojima Y, Chun HJ, Azuma J, Maegdefessel L, et al. MicroRNA-26a is a novel regulator of vascular smooth muscle cell function. J Cell Physiol. 2011;226:1035–43.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Chan MC, Hilyard AC, Wu C, Davis BN, Hill NS, Lal A, et al. Molecular basis for antagonism between PDGF and the TGFbeta family of signalling pathways by control of miR-24 expression. EMBO J. 2010;29:559–73.

    Article  CAS  PubMed  Google Scholar 

  105. Yan J, Stringer SE, Hamilton A, Charlton-Menys V, Gotting C, Muller B, et al. Decorin GAG synthesis and TGF-beta signaling mediate Ox-LDL-induced mineralization of human vascular smooth muscle cells. Arterioscler Thromb Vasc Biol. 2011;31:608–15.

    Article  CAS  PubMed  Google Scholar 

  106. Nasser MW, Datta J, Nuovo G, Kutay H, Motiwala T, Majumder S, et al. Down-regulation of micro-RNA-1 (miR-1) in lung cancer. Suppression of tumorigenic property of lung cancer cells and their sensitization to doxorubicin-induced apoptosis by miR-1. J Biol Chem. 2008;283:33394–405.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Xie C, Huang H, Sun X, Guo Y, Hamblin M, Ritchie RP, et al. MicroRNA-1 regulates smooth muscle cell differentiation by repressing Kruppel-like factor 4. Stem Cells Dev. 2011;20: 205–10.

    Article  CAS  PubMed  Google Scholar 

  108. Huang H, Xie C, Sun X, Ritchie RP, Zhang J, Chen YE. miR-10a contributes to retinoid acid-induced smooth muscle cell differentiation. J Biol Chem. 2010;285:9383–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Fang Y, Shi C, Manduchi E, Civelek M, Davies PF. MicroRNA-10a regulation of proinflammatory phenotype in athero-susceptible endothelium in vivo and in vitro. Proc Natl Acad Sci U S A. 2010;107:13450–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Kim S, Kang H. miR-15b induced by platelet-derived growth factor signaling is required for vascular smooth muscle cell proliferation. BMB Rep. 2013;46:550–4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Kee HJ, Kim GR, Cho SN, Kwon JS, Ahn Y, Kook H, et al. miR-18a-5p microRNA increases vascular smooth muscle cell differentiation by downregulating syndecan4. Korean Circ J. 2014;44:255–63.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Cheng Y, Zhang C. MicroRNA-21 in cardiovascular disease. J Cardiovasc Transl Res. 2010;3:251–5.

    Article  PubMed  PubMed Central  Google Scholar 

  113. Young MR, Santhanam AN, Yoshikawa N, Colburn NH. Have tumor suppressor PDCD4 and its counteragent oncogenic miR-21 gone rogue? Mol Interv. 2010;10:76–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. Choe N, Kwon JS, Kim JR, Eom GH, Kim Y, Nam KI, et al. The microRNA miR-132 targets Lrrfip1 to block vascular smooth muscle cell proliferation and neointimal hyperplasia. Atherosclerosis. 2013;229:348–55.

    Article  CAS  PubMed  Google Scholar 

  115. Kinoshita T, Nohata N, Fuse M, Hanazawa T, Kikkawa N, Fujimura L, et al. Tumor suppressive microRNA-133a regulates novel targets: moesin contributes to cancer cell proliferation and invasion in head and neck squamous cell carcinoma. Biochem Biophys Res Commun. 2012;418:378–83.

    Article  CAS  PubMed  Google Scholar 

  116. Qiu T, Zhou X, Wang J, Du Y, Xu J, Huang Z, et al. MiR-145, miR-133a and miR-133b inhibit proliferation, migration, invasion and cell cycle progression via targeting transcription factor Sp1 in gastric cancer. FEBS Lett. 2014;588:1168–77.

    Article  CAS  PubMed  Google Scholar 

  117. Kim MH, Ham O, Lee SY, Choi E, Lee CY, Park JH, et al. MicroRNA-365 inhibits the proliferation of vascular smooth muscle cells by targeting cyclin D1. J Cell Biochem. 2014;115:1752–61.

    Article  CAS  PubMed  Google Scholar 

  118. Merlet E, Atassi F, Motiani RK, Mougenot N, Jacquet A, Nadaud S, et al. miR-424/322 regulates vascular smooth muscle cell phenotype and neointimal formation in the rat. Cardiovasc Res. 2013;98:458–68.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. Sun Y, Chen D, Cao L, Zhang R, Zhou J, Chen H, et al. MiR-490-3p modulates the proliferation of vascular smooth muscle cells induced by ox-LDL through targeting PAPP-A. Cardiovasc Res. 2013;100:272–9.

    Article  CAS  PubMed  Google Scholar 

  120. Li P, Liu Y, Yi B, Wang G, You X, Zhao X, et al. MicroRNA-638 is highly expressed in human vascular smooth muscle cells and inhibits PDGF-BB-induced cell proliferation and migration through targeting orphan nuclear receptor NOR1. Cardiovasc Res. 2013;99:185–93.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  121. Li P, Zhu N, Yi B, Wang N, Chen M, You X, et al. MicroRNA-663 regulates human vascular smooth muscle cell phenotypic switch and vascular neointimal formation. Circ Res. 2013;113: 1117–27.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  122. Korff T, Pfisterer L, Schorpp-Kistner M. miR-663 and the miRaculous vascular smooth muscle phenotypic switch. Circ Res. 2013;113:1102–5.

    Article  CAS  PubMed  Google Scholar 

  123. Ji R, Cheng Y, Yue J, Yang J, Liu X, Chen H, et al. MicroRNA expression signature and antisense-mediated depletion reveal an essential role of MicroRNA in vascular neointimal lesion formation. Circ Res. 2007;100:1579–88.

    Article  CAS  PubMed  Google Scholar 

  124. Silvestri P, Rigattieri S, Loschiavo P. Does the effect of microRNAs in vascular neointimal formation depend on cell cycle phase? Circ Res. 2008;102(9):e101; author reply e102.

    Article  CAS  PubMed  Google Scholar 

  125. Davis-Dusenbery BN, Wu C, Hata A. Micromanaging vascular smooth muscle cell differentiation and phenotypic modulation. Arterioscler Thromb Vasc Biol. 2011;31:2370–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  126. Talasila A, Yu H, Ackers-Johnson M, Bot M, van Berkel T, Bennett MR, et al. Myocardin regulates vascular response to injury through miR-24/-29a and platelet-derived growth factor receptor-beta. Arterioscler Thromb Vasc Biol. 2013;33:2355–65.

    Article  CAS  PubMed  Google Scholar 

  127. Icli B, Wara AK, Moslehi J, Sun X, Plovie E, Cahill M, et al. MicroRNA-26a regulates pathological and physiological angiogenesis by targeting BMP/SMAD1 signaling. Circ Res. 2013; 113:1231–41.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  128. Bai Y, Wang L, Sun L, Ye P, Hui R. Circulating microRNA-26a: potential predictors and therapeutic targets for non-hypertensive intracerebral hemorrhage. Med Hypotheses. 2011; 77:488–90.

    Article  CAS  PubMed  Google Scholar 

  129. Liu X, Cheng Y, Chen X, Yang J, Xu L, Zhang C. MicroRNA-31 regulated by the extracellular regulated kinase is involved in vascular smooth muscle cell growth via large tumor suppressor homolog 2. J Biol Chem. 2011;286:42371–80.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  130. Liu X, Sempere LF, Ouyang H, Memoli VA, Andrew AS, Luo Y, et al. MicroRNA-31 functions as an oncogenic microRNA in mouse and human lung cancer cells by repressing specific tumor suppressors. J Clin Invest. 2010;120:1298–309.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  131. Wang J, Yan CH, Li Y, Xu K, Tian XX, Peng CF, et al. MicroRNA-31 controls phenotypic modulation of human vascular smooth muscle cells by regulating its target gene cellular repressor of E1A-stimulated genes. Exp Cell Res. 2013;319:1165–75.

    Article  CAS  PubMed  Google Scholar 

  132. Cheng HS, Sivachandran N, Lau A, Boudreau E, Zhao JL, Baltimore D, et al. MicroRNA-146 represses endothelial activation by inhibiting pro-inflammatory pathways. EMBO Mol Med. 2013;5:949–66.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  133. Togliatto G, Trombetta A, Dentelli P, Rosso A, Brizzi MF. MIR221/MIR222-driven post-transcriptional regulation of P27KIP1 and P57KIP2 is crucial for high-glucose- and AGE-mediated vascular cell damage. Diabetologia. 2011;54:1930–40.

    Article  CAS  PubMed  Google Scholar 

  134. Kothapalli D, Castagnino P, Rader DJ, Phillips MC, Lund-Katz S, Assoian RK. Apolipoprotein E-mediated cell cycle arrest linked to p27 and the Cox2-dependent repression of miR221/222. Atherosclerosis. 2013;227:65–71.

    Article  CAS  PubMed  Google Scholar 

  135. Mackenzie NC, Staines KA, Zhu D, Genever P, Macrae VE. miRNA-221 and miRNA-222 synergistically function to promote vascular calcification. Cell Biochem Funct. 2014;32: 209–16.

    Article  CAS  PubMed  Google Scholar 

  136. Gao S, Wassler M, Zhang L, Li Y, Wang J, Zhang Y, et al. MicroRNA-133a regulates insulin-like growth factor-1 receptor expression and vascular smooth muscle cell proliferation in murine atherosclerosis. Atherosclerosis. 2014;232:171–9.

    Article  CAS  PubMed  Google Scholar 

  137. Zhang CF, Kang K, Li XM, Xie BD. MicroRNA-136 promotes vascular muscle cell proliferation through the ERK1/2 pathway by targeting PPP2R2A in atherosclerosis. Curr Vasc Pharmacol. 2014;13(3):405–12.

    Article  CAS  Google Scholar 

  138. Hu W, Wang M, Yin H, Yao C, He Q, Yin L, et al. MicroRNA-1298 is regulated by DNA methylation and affects vascular smooth muscle cell function by targeting connexin 43. Cardiovasc Res. 2015;107:534–45.

    Google Scholar 

  139. Weissberg PL, Clesham GJ, Bennett MR. Is vascular smooth muscle cell proliferation beneficial? Lancet. 1996;347:305–7.

    Article  CAS  PubMed  Google Scholar 

  140. O’Sullivan JF, Martin K, Caplice NM. Microribonucleic acids for prevention of plaque rupture and in-stent restenosis: “a finger in the dam”. J Am Coll Cardiol. 2011;57:383–9.

    Article  PubMed  CAS  Google Scholar 

  141. Vanhoutte PM. Endothelium-derived free radicals: for worse and for better. J Clin Invest. 2001;107:23–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  142. Harrison DG. Cellular and molecular mechanisms of endothelial cell dysfunction. J Clin Invest. 1997;100:2153–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  143. Iaccarino D, Politi L, Rossi R, Sgura F, Monopoli D, Modena MG, et al. Rationale and study design of the OISTER trial: optical coherence tomography evaluation of stent struts re-endothelialization in patients with non-ST-elevation acute coronary syndromes—a comparison of the intrEpide tRapidil eluting stent vs. taxus drug-eluting stent implantation. J Cardiovasc Med (Hagerstown). 2010;11:536–43.

    Article  Google Scholar 

  144. Mei H, Campbell JM, Paddock CM, Lertkiatmongkol P, Mosesson MW, Albrecht RM, et al. Regulation of endothelial cell barrier function by antibody-driven affinity modulation of PECAM-1. J Biol Chem. 2014;289(30):20836–44.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  145. Pannekoek WJ, Post A, Bos JL. Rap1 signaling in endothelial barrier control. Cell Adh Migr. 2014;8(2):100–7.

    Article  PubMed  PubMed Central  Google Scholar 

  146. Gadang V, Konaniah E, Hui DY, Jaeschke A. Mixed-lineage kinase 3 deficiency promotes neointima formation through increased activation of the RhoA pathway in vascular smooth muscle cells. Arterioscler Thromb Vasc Biol. 2014;34:1429–36.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  147. Popma JJ, Topol EJ. Factors influencing restenosis after coronary angioplasty. Am J Med. 1990;88:16N–24.

    CAS  PubMed  Google Scholar 

  148. Faxon DP, Sanborn TA, Haudenschild CC. Mechanism of angioplasty and its relation to restenosis. Am J Cardiol. 1987;60:5B–9.

    Article  CAS  PubMed  Google Scholar 

  149. Chaabane C, Otsuka F, Virmani R, Bochaton-Piallat ML. Biological responses in stented arteries. Cardiovasc Res. 2013;99:353–63.

    Article  CAS  PubMed  Google Scholar 

  150. De Caterina R, Massaro M, Scoditti E, Annunziata CM. Pharmacological modulation of vascular inflammation in atherothrombosis. Ann N Y Acad Sci. 2010;1207:23–31.

    Article  PubMed  CAS  Google Scholar 

  151. Esmon CT. Inflammation and thrombosis. J Thromb Haemost. 2003;1:1343–8.

    Article  CAS  PubMed  Google Scholar 

  152. Rhee JW, Wu JC. Advances in nanotechnology for the management of coronary artery disease. Trends Cardiovasc Med. 2013;23:39–45.

    Article  CAS  PubMed  Google Scholar 

  153. Otsuka F, Finn AV, Yazdani SK, Nakano M, Kolodgie FD, Virmani R. The importance of the endothelium in atherothrombosis and coronary stenting. Nat Rev Cardiol. 2012;9:439–53.

    Article  CAS  PubMed  Google Scholar 

  154. Hagensen MK, Raarup MK, Mortensen MB, Thim T, Nyengaard JR, Falk E, et al. Circulating endothelial progenitor cells do not contribute to regeneration of endothelium after murine arterial injury. Cardiovasc Res. 2012;93:223–31.

    Article  CAS  PubMed  Google Scholar 

  155. Tsuzuki M. Bone marrow-derived cells are not involved in reendothelialized endothelium as endothelial cells after simple endothelial denudation in mice. Basic Res Cardiol. 2009;104: 601–11.

    Article  PubMed  Google Scholar 

  156. Cevese A. Totipotent stem cells could do everything … or else nothing: the case of vascular reendothelialization. Cardiovasc Res. 2012;93:211–2.

    Article  CAS  PubMed  Google Scholar 

  157. Pearson JD. Endothelial progenitor cells—hype or hope? J Thromb Haemost. 2009;7: 255–62.

    Article  CAS  PubMed  Google Scholar 

  158. Jimenez JM, Prasad V, Yu MD, Kampmeyer CP, Kaakour AH, Wang PJ, et al. Macro- and microscale variables regulate stent haemodynamics, fibrin deposition and thrombomodulin expression. J R Soc Interface. 2014;11(94):20131079.

    Article  PubMed  PubMed Central  Google Scholar 

  159. Alexander RW. Getting stents to go with the flow. J Clin Invest. 2004;113:1532–4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  160. Liuzzo JP, Ambrose JA, Coppola JT. Sirolimus- and taxol-eluting stents differ towards intimal hyperplasia and re-endothelialization. J Invasive Cardiol. 2005;17:497–502.

    PubMed  Google Scholar 

  161. Simard T, Hibbert B, Ramirez FD, Froeschl M, Chen YX, O’Brien ER. The evolution of coronary stents: a brief review. Can J Cardiol. 2014;30:35–45.

    Article  PubMed  Google Scholar 

  162. Palmerini T, Biondi-Zoccai G, Della Riva D, Stettler C, Sangiorgi D, D’Ascenzo F, et al. Stent thrombosis with drug-eluting and bare-metal stents: evidence from a comprehensive network meta-analysis. Lancet. 2012;379:1393–402.

    Article  CAS  PubMed  Google Scholar 

  163. Di Lorenzo E, Carbone G, Sauro L, Casafina A, Capasso M, Sauro R. Bare-metal stents versus drug-eluting stents for primary angioplasty: long-term outcome. Curr Cardiol Rep. 2011; 13:459–64.

    Article  PubMed  Google Scholar 

  164. Wessely R. New drug-eluting stent concepts. Nat Rev Cardiol. 2010;7:194–203.

    Article  CAS  PubMed  Google Scholar 

  165. Huang KN, Grandi SM, Filion KB, Eisenberg MJ. Late and very late stent thrombosis in patients with second-generation drug-eluting stents. Can J Cardiol. 2013;29:1488–94.

    Article  PubMed  Google Scholar 

  166. Siddiqi OK, Faxon DP. Very late stent thrombosis: current concepts. Curr Opin Cardiol. 2012;27:634–41.

    Article  PubMed  Google Scholar 

  167. McFadden EP, Stabile E, Regar E, Cheneau E, Ong AT, Kinnaird T, et al. Late thrombosis in drug-eluting coronary stents after discontinuation of antiplatelet therapy. Lancet. 2004;364:1519–21.

    Article  CAS  PubMed  Google Scholar 

  168. Rossini R, Baroni M, Musumeci G, Gavazzi A. Oral antiplatelet therapy after drug-eluting stent implantation: adherence and side-effects. J Cardiovasc Med (Hagerstown). 2013;14: 81–90.

    Article  CAS  Google Scholar 

  169. Dehmer GJ, Smith KJ. Drug-eluting coronary artery stents. Am Fam Physician. 2009; 80:1245–51.

    PubMed  Google Scholar 

  170. Jansen F, Yang X, Hoelscher M, Cattelan A, Schmitz T, Proebsting S, et al. Endothelial microparticle-mediated transfer of MicroRNA-126 promotes vascular endothelial cell repair via SPRED1 and is abrogated in glucose-damaged endothelial microparticles. Circulation. 2013;128:2026–38.

    Article  CAS  PubMed  Google Scholar 

  171. Deb A, Patterson C. Hard luck stories: the reality of endothelial progenitor cells continues to fall short of the promise. Circulation. 2010;121:850–2.

    Article  PubMed  PubMed Central  Google Scholar 

  172. Hagensen MK, Shim J, Thim T, Falk E, Bentzon JF. Circulating endothelial progenitor cells do not contribute to plaque endothelium in murine atherosclerosis. Circulation. 2010;121: 898–905.

    Article  PubMed  Google Scholar 

  173. Jansen F, Yang X, Proebsting S, Hoelscher M, Przybilla D, Baumann K, et al. MicroRNA expression in circulating microvesicles predicts cardiovascular events in patients with coronary artery disease. J Am Heart Assoc. 2014;3, e001249.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  174. Santulli G. Angiogenesis: insights from a systematic overview. New York: Nova Science; 2013.

    Google Scholar 

  175. Zhuang G, Wu X, Jiang Z, Kasman I, Yao J, Guan Y, et al. Tumour-secreted miR-9 promotes endothelial cell migration and angiogenesis by activating the JAK-STAT pathway. EMBO J. 2012;31:3513–23.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  176. Qin B, Yang H, Xiao B. Role of microRNAs in endothelial inflammation and senescence. Mol Biol Rep. 2012;39:4509–18.

    Article  CAS  PubMed  Google Scholar 

  177. Kumar S, Kim CW, Simmons RD, Jo H. Role of flow-sensitive microRNAs in endothelial dysfunction and atherosclerosis: mechanosensitive athero-miRs. Arterioscler Thromb Vasc Biol. 2014;34:2206–16.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  178. Zhou Q, Gallagher R, Ufret-Vincenty R, Li X, Olson EN, Wang S. Regulation of angiogenesis and choroidal neovascularization by members of microRNA-23~27~24 clusters. Proc Natl Acad Sci U S A. 2011;108:8287–92.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  179. Nicoli S, Standley C, Walker P, Hurlstone A, Fogarty KE, Lawson ND. MicroRNA-mediated integration of haemodynamics and Vegf signalling during angiogenesis. Nature. 2010;464: 1196–200.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  180. Ye X, Hemida MG, Qiu Y, Hanson PJ, Zhang HM, Yang D. MiR-126 promotes coxsackievirus replication by mediating cross-talk of ERK1/2 and Wnt/beta-catenin signal pathways. Cell Mol Life Sci. 2013;70:4631–44.

    Article  CAS  PubMed  Google Scholar 

  181. Taverna S, Amodeo V, Saieva L, Russo A, Giallombardo M, De Leo G, et al. Exosomal shuttling of miR-126 in endothelial cells modulates adhesive and migratory abilities of chronic myelogenous leukemia cells. Mol Cancer. 2014;13:169.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  182. Liu LY, Wang W, Zhao LY, Guo B, Yang J, Zhao XG, et al. Mir-126 inhibits growth of SGC-7901 cells by synergistically targeting the oncogenes PI3KR2 and Crk, and the tumor suppressor PLK2. Int J Oncol. 2014;45:1257–65.

    CAS  PubMed  Google Scholar 

  183. Wang Z, Yin B, Wang B, Ma Z, Liu W, Lv G. MicroRNA-210 promotes proliferation and invasion of peripheral nerve sheath tumor cells targeting EFNA3. Oncol Res. 2013;21: 145–54.

    Article  PubMed  CAS  Google Scholar 

  184. Menghini R, Casagrande V, Cardellini M, Martelli E, Terrinoni A, Amati F, et al. MicroRNA 217 modulates endothelial cell senescence via silent information regulator 1. Circulation. 2009;120:1524–32.

    Article  CAS  PubMed  Google Scholar 

  185. Kim J, Kang Y, Kojima Y, Lighthouse JK, Hu X, Aldred MA, et al. An endothelial apelin-FGF link mediated by miR-424 and miR-503 is disrupted in pulmonary arterial hypertension. Nat Med. 2013;19:74–82.

    Article  CAS  PubMed  Google Scholar 

  186. Katz G, Pobezinsky LA, Jeurling S, Shinzawa M, Van Laethem F, Singer A. T cell receptor stimulation impairs IL-7 receptor signaling by inducing expression of the microRNA miR-17 to target Janus kinase 1. Sci Signal. 2014;7:ra83.

    Article  PubMed  CAS  Google Scholar 

  187. Jin C, Zhao Y, Yu L, Xu S, Fu G. MicroRNA-21 mediates the rapamycin-induced suppression of endothelial proliferation and migration. FEBS Lett. 2013;587:378–85.

    Article  CAS  PubMed  Google Scholar 

  188. Zhou J, Wang KC, Wu W, Subramaniam S, Shyy JY, Chiu JJ, et al. MicroRNA-21 targets peroxisome proliferators-activated receptor-alpha in an autoregulatory loop to modulate flow-induced endothelial inflammation. Proc Natl Acad Sci U S A. 2011;108:10355–60.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  189. Fiedler J, Jazbutyte V, Kirchmaier BC, Gupta SK, Lorenzen J, Hartmann D, et al. MicroRNA-24 regulates vascularity after myocardial infarction. Circulation. 2011;124:720–30.

    Article  CAS  PubMed  Google Scholar 

  190. Zhou Q, Anderson C, Zhang H, Li X, Inglis F, Jayagopal A, et al. Repression of choroidal neovascularization through actin cytoskeleton pathways by microRNA-24. Mol Ther. 2014; 22:378–89.

    Article  CAS  PubMed  Google Scholar 

  191. Ohyagi-Hara C, Sawada K, Kamiura S, Tomita Y, Isobe A, Hashimoto K, et al. miR-92a inhibits peritoneal dissemination of ovarian cancer cells by inhibiting integrin alpha5 expression. Am J Pathol. 2013;182:1876–89.

    Article  CAS  PubMed  Google Scholar 

  192. Chen Z, Wen L, Martin M, Hsu CY, Fang L, Lin FM, et al. Oxidative stress activates endothelial innate immunity via sterol regulatory element binding protein 2 (SREBP2) transactivation of microRNA-92a. Circulation. 2015;131:805–14.

    Article  CAS  PubMed  Google Scholar 

  193. Chan YC, Khanna S, Roy S, Sen CK. miR-200b targets Ets-1 and is down-regulated by hypoxia to induce angiogenic response of endothelial cells. J Biol Chem. 2011;286:2047–56.

    Article  CAS  PubMed  Google Scholar 

  194. Pecot CV, Rupaimoole R, Yang D, Akbani R, Ivan C, Lu C, et al. Tumour angiogenesis regulation by the miR-200 family. Nat Commun. 2013;4:2427.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  195. Liu X, Cheng Y, Yang J, Xu L, Zhang C. Cell-specific effects of miR-221/222 in vessels: molecular mechanism and therapeutic application. J Mol Cell Cardiol. 2012;52:245–55.

    Article  CAS  PubMed  Google Scholar 

  196. Nicoli S, Knyphausen CP, Zhu LJ, Lakshmanan A, Lawson ND. miR-221 is required for endothelial tip cell behaviors during vascular development. Dev Cell. 2012;22:418–29.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  197. Poliseno L, Tuccoli A, Mariani L, Evangelista M, Citti L, Woods K, et al. MicroRNAs modulate the angiogenic properties of HUVECs. Blood. 2006;108:3068–71.

    Article  CAS  PubMed  Google Scholar 

  198. Patella F, Leucci E, Evangelista M, Parker B, Wen J, Mercatanti A, et al. MiR-492 impairs the angiogenic potential of endothelial cells. J Cell Mol Med. 2013;17:1006–15.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  199. Welten SM, Bastiaansen AJ, de Jong RC, de Vries MR, Peters EA, Boonstra MC, et al. Inhibition of 14q32 microRNAs miR-329, miR-487b, miR-494, and miR-495 increases neovascularization and blood flow recovery after ischemia. Circ Res. 2014;115:696–708.

    Article  CAS  PubMed  Google Scholar 

  200. Santulli G. Coronary heart disease risk factors and mortality. JAMA. 2012;307:1137.

    Article  CAS  PubMed  Google Scholar 

  201. Santulli G. Epidemiology of cardiovascular disease in the 21st century: updated numbers and updated facts. J Cardiovasc Dis (JCvD). 2013;1:1–2.

    Article  Google Scholar 

  202. Weintraub WS, Daniels SR, Burke LE, Franklin BA, Goff Jr DC, Hayman LL, et al. Value of primordial and primary prevention for cardiovascular disease: a policy statement from the American Heart Association. Circulation. 2011;124:967–90.

    Article  CAS  PubMed  Google Scholar 

  203. Lloyd-Jones D, Adams RJ, Brown TM, Carnethon M, Dai S, De Simone G, et al. Heart disease and stroke statistics–2010 update: a report from the American Heart Association. Circulation. 2010;121:e46–215.

    Article  PubMed  Google Scholar 

  204. Stefanini GG, Holmes Jr DR. Drug-eluting coronary-artery stents. N Engl J Med. 2013;368: 254–65.

    Article  CAS  PubMed  Google Scholar 

  205. Rao PS, Thapar MK, Kutayli F. Causes of restenosis after balloon valvuloplasty for valvular pulmonary stenosis. Am J Cardiol. 1988;62:979–82.

    Article  CAS  PubMed  Google Scholar 

  206. Friedman SG. Charles dotter: interventional radiologist. Radiology. 1989;172:921–4.

    Article  CAS  PubMed  Google Scholar 

  207. Gruentzig AR. Percutaneous transluminal coronary angioplasty. Semin Roentgenol. 1981;16: 152–3.

    Article  CAS  PubMed  Google Scholar 

  208. Meier B, Gruentzig AR, Goebel N, Pyle R, von Gosslar W, Schlumpf M. Assessment of stenoses in coronary angioplasty. Inter- and intraobserver variability. Int J Cardiol. 1983;3: 159–69.

    Article  CAS  PubMed  Google Scholar 

  209. Nobuyoshi M, Kimura T, Nosaka H, Mioka S, Ueno K, Yokoi H, et al. Restenosis after successful percutaneous transluminal coronary angioplasty: serial angiographic follow-up of 229 patients. J Am Coll Cardiol. 1988;12:616–23.

    Article  CAS  PubMed  Google Scholar 

  210. Holmes Jr DR, Vlietstra RE, Smith HC, Vetrovec GW, Kent KM, Cowley MJ, et al. Restenosis after percutaneous transluminal coronary angioplasty (PTCA): a report from the PTCA registry of the National Heart, Lung, and Blood Institute. Am J Cardiol. 1984;53:77C–81.

    Article  PubMed  Google Scholar 

  211. Sigwart U, Puel J, Mirkovitch V, Joffre F, Kappenberger L. Intravascular stents to prevent occlusion and restenosis after transluminal angioplasty. N Engl J Med. 1987;316:701–6.

    Article  CAS  PubMed  Google Scholar 

  212. Serruys PW, de Jaegere P, Kiemeneij F, Macaya C, Rutsch W, Heyndrickx G, et al. A comparison of balloon-expandable-stent implantation with balloon angioplasty in patients with coronary artery disease. Benestent Study Group. N Engl J Med. 1994;331:489–95.

    Article  CAS  PubMed  Google Scholar 

  213. Fischman DL, Leon MB, Baim DS, Schatz RA, Savage MP, Penn I, et al. A randomized comparison of coronary-stent placement and balloon angioplasty in the treatment of coronary artery disease. Stent Restenosis Study Investigators. N Engl J Med. 1994;331:496–501.

    Article  CAS  PubMed  Google Scholar 

  214. Marx SO, Totary-Jain H, Marks AR. Vascular smooth muscle cell proliferation in restenosis. Circ Cardiovasc Interv. 2011;4:104–11.

    Article  CAS  PubMed  Google Scholar 

  215. Park YM, Febbraio M, Silverstein RL. CD36 modulates migration of mouse and human macrophages in response to oxidized LDL and may contribute to macrophage trapping in the arterial intima. J Clin Invest. 2009;119:136–45.

    CAS  PubMed  Google Scholar 

  216. Suzuki N, Angiolillo DJ, Monteiro C, Shuja S, Futamatsu H, Kawaguchi R, et al. Variable histological and ultrasonic characteristics of restenosis after drug-eluting stents. Int J Cardiol. 2008;130:444–8.

    Article  PubMed  Google Scholar 

  217. Jukema JW, Verschuren JJW, Ahmed TAN, Quax PH. Restenosis after PCI. Part 1: pathophysiology and risk factors. Nat Rev Cardiol. 2012;9:53–62.

    Article  CAS  Google Scholar 

  218. Marks AR. Sirolimus for the prevention of in-stent restenosis in a coronary artery. N Engl J Med. 2003;349:1307–9.

    Article  CAS  PubMed  Google Scholar 

  219. Santulli G, Totary-Jain H. Tailoring mTOR-based therapy: molecular evidence and clinical challenges. Pharmacogenomics. 2013;14:1517–26.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  220. Moses JW, Leon MB, Popma JJ, Fitzgerald PJ, Holmes DR, O’Shaughnessy C, et al. Sirolimus-eluting stents versus standard stents in patients with stenosis in a native coronary artery. N Engl J Med. 2003;349:1315–23.

    Article  CAS  PubMed  Google Scholar 

  221. Stone GW, Ellis SG, Cox DA, Hermiller J, O’Shaughnessy C, Mann JT, et al. A polymer-based, paclitaxel-eluting stent in patients with coronary artery disease. N Engl J Med. 2004;350:221–31.

    Article  CAS  PubMed  Google Scholar 

  222. Rollini F, Aprile A, Politi L, Sangiorgi GM. Evaluation of re-endothelization extent at mid-term follow-up after drug eluting balloon plus bare metal stent implantation during primary coronary angioplasty: insight from OCT imaging. Minerva Cardioangiol. 2011;59:109–12.

    CAS  PubMed  Google Scholar 

  223. Jakabcin J, Bystron M, Spacek R, Veselka J, Kvasnak M, Kala P, et al. The lack of endothelization after drug-eluting stent implantation as a cause of fatal late stent thrombosis. J Thromb Thrombolysis. 2008;26:154–8.

    Article  PubMed  Google Scholar 

  224. Tamburino C, Ussia GP, Zimarino M, Galassi AR, De Caterina R. Early restenosis after drug-eluting stent implantation: a putative role for platelet activation. Can J Cardiol. 2007;23: 57–9.

    Article  PubMed  PubMed Central  Google Scholar 

  225. Wijns WC, Krucoff MW. Increased mortality after implantation of first generation drug-eluting stents: seeing the smoke, where is the fire? Eur Heart J. 2006;27:2737–9.

    Article  PubMed  Google Scholar 

  226. Joner M, Finn AV, Farb A, Mont EK, Kolodgie FD, Ladich E, et al. Pathology of drug-eluting stents in humans: delayed healing and late thrombotic risk. J Am Coll Cardiol. 2006;48: 193–202.

    Article  PubMed  Google Scholar 

  227. Cassese S, Kastrati A. New-generation drug-eluting stents for patients with myocardial infarction. JAMA. 2012;308:814–5.

    Article  CAS  PubMed  Google Scholar 

  228. Moss SC, Lightell Jr DJ, Marx SO, Marks AR, Woods TC. Rapamycin regulates endothelial cell migration through regulation of the cyclin-dependent kinase inhibitor p27Kip1. J Biol Chem. 2010;285:11991–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  229. Lange RA, Hillis LD. Second-generation drug-eluting coronary stents. N Engl J Med. 2010;362:1728–30.

    Article  CAS  PubMed  Google Scholar 

  230. Sun J, Marx SO, Chen HJ, Poon M, Marks AR, Rabbani LE. Role for p27(Kip1) in vascular smooth muscle cell migration. Circulation. 2001;103:2967–72.

    Article  CAS  PubMed  Google Scholar 

  231. Poon M, Marx SO, Gallo R, Badimon JJ, Taubman MB, Marks AR. Rapamycin inhibits vascular smooth muscle cell migration. J Clin Invest. 1996;98:2277–83.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  232. Wenaweser P, Daemen J, Zwahlen M, van Domburg R, Juni P, Vaina S, et al. Incidence and correlates of drug-eluting stent thrombosis in routine clinical practice. 4-year results from a large 2-institutional cohort study. J Am Coll Cardiol. 2008;52:1134–40.

    Article  CAS  PubMed  Google Scholar 

  233. Kipshidze N, Dangas G, Tsapenko M, Moses J, Leon MB, Kutryk M, et al. Role of the endothelium in modulating neointimal formation: vasculoprotective approaches to attenuate restenosis after percutaneous coronary interventions. J Am Coll Cardiol. 2004;44:733–9.

    CAS  PubMed  Google Scholar 

  234. Yu PJ, Ferrari G, Pirelli L, Gulkarov I, Galloway AC, Mignatti P, et al. Vascular injury and modulation of MAPKs: a targeted approach to therapy of restenosis. Cell Signal. 2007;19:1359–71.

    Article  CAS  PubMed  Google Scholar 

  235. Torella D, Gasparri C, Ellison GM, Curcio A, Leone A, Vicinanza C, et al. Differential regulation of vascular smooth muscle and endothelial cell proliferation in vitro and in vivo by cAMP/PKA-activated p85alphaPI3K. Am J Physiol Heart Circ Physiol. 2009;297:H2015–25.

    Article  CAS  PubMed  Google Scholar 

  236. Davis BN, Hilyard AC, Nguyen PH, Lagna G, Hata A. Induction of microRNA-221 by platelet-derived growth factor signaling is critical for modulation of vascular smooth muscle phenotype. J Biol Chem. 2009;284:3728–38.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  237. Cheng Y, Liu X, Yang J, Lin Y, Xu DZ, Lu Q, et al. MicroRNA-145, a novel smooth muscle cell phenotypic marker and modulator, controls vascular neointimal lesion formation. Circ Res. 2009;105:158–66.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  238. McDonald RA, Halliday CA, Miller AM, Diver LA, Dakin RS, Montgomery J, et al. Reducing in-stent restenosis: therapeutic manipulation of miRNA in vascular remodeling and inflammation. J Am Coll Cardiol. 2015;65:2314–27.

    Article  PubMed  PubMed Central  Google Scholar 

  239. van Rooij E, Sutherland LB, Thatcher JE, DiMaio JM, Naseem RH, Marshall WS, et al. Dysregulation of microRNAs after myocardial infarction reveals a role of miR-29 in cardiac fibrosis. Proc Natl Acad Sci U S A. 2008;105:13027–32.

    Article  PubMed  PubMed Central  Google Scholar 

  240. Care A, Catalucci D, Felicetti F, Bonci D, Addario A, Gallo P, et al. MicroRNA-133 controls cardiac hypertrophy. Nat Med. 2007;13:613–8.

    Article  CAS  PubMed  Google Scholar 

  241. Lin Z, Murtaza I, Wang K, Jiao J, Gao J, Li PF. miR-23a functions downstream of NFATc3 to regulate cardiac hypertrophy. Proc Natl Acad Sci U S A. 2009;106:12103–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  242. Bonauer A, Carmona G, Iwasaki M, Mione M, Koyanagi M, Fischer A, et al. MicroRNA-92a controls angiogenesis and functional recovery of ischemic tissues in mice. Science. 2009;324:1710–3.

    Article  CAS  PubMed  Google Scholar 

  243. Thum T, Gross C, Fiedler J, Fischer T, Kissler S, Bussen M, et al. MicroRNA-21 contributes to myocardial disease by stimulating MAP kinase signalling in fibroblasts. Nature. 2008;456: 980–4.

    Article  CAS  PubMed  Google Scholar 

  244. Krutzfeldt J, Rajewsky N, Braich R, Rajeev KG, Tuschl T, Manoharan M, et al. Silencing of microRNAs in vivo with ‘antagomirs’. Nature. 2005;438:685–9.

    Article  PubMed  CAS  Google Scholar 

  245. Weiler J, Hunziker J, Hall J. Anti-miRNA oligonucleotides (AMOs): ammunition to target miRNAs implicated in human disease? Gene Ther. 2006;13:496–502.

    Article  CAS  PubMed  Google Scholar 

  246. Stenvang J, Kauppinen S. MicroRNAs as targets for antisense-based therapeutics. Expert Opin Biol Ther. 2008;8:59–81.

    Article  CAS  PubMed  Google Scholar 

  247. Baumann V, Winkler J. miRNA-based therapies: strategies and delivery platforms for oligonucleotide and non-oligonucleotide agents. Future Med Chem. 2014;6:1967–84.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  248. Zhang Y, Wang Z, Gemeinhart RA. Progress in microRNA delivery. J Control Release. 2013;172:962–74.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  249. Luck ME, Muljo SA, Collins CB. Prospects for therapeutic targeting of MicroRNAs in human immunological diseases. J Immunol. 2015;194:5047–52.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  250. Muthiah M, Park IK, Cho CS. Nanoparticle-mediated delivery of therapeutic genes: focus on miRNA therapeutics. Expert Opin Drug Deliv. 2013;10:1259–73.

    Article  CAS  PubMed  Google Scholar 

  251. Puricel S, Arroyo D, Corpataux N, Baeriswyl G, Lehmann S, Kallinikou Z, et al. Comparison of everolimus- and biolimus-eluting coronary stents with everolimus-eluting bioresorbable vascular scaffolds. J Am Coll Cardiol. 2015;65:791–801.

    Article  CAS  PubMed  Google Scholar 

  252. Sato K, Latib A, Panoulas VF, Kawamoto H, Naganuma T, Miyazaki T, et al. Procedural feasibility and clinical outcomes in propensity-matched patients treated with bioresorbable scaffolds vs new-generation drug-eluting stents. Can J Cardiol. 2015;31:328–34.

    Article  PubMed  Google Scholar 

  253. Raungaard B, Jensen LO, Tilsted HH, Christiansen EH, Maeng M, Terkelsen CJ, et al. Zotarolimus-eluting durable-polymer-coated stent versus a biolimus-eluting biodegradable-polymer-coated stent in unselected patients undergoing percutaneous coronary intervention (SORT OUT VI): a randomised non-inferiority trial. Lancet. 2015;385:1527–35.

    Article  CAS  PubMed  Google Scholar 

  254. Karanasos A, Simsek C, Gnanadesigan M, van Ditzhuijzen NS, Freire R, Dijkstra J, et al. OCT assessment of the long-term vascular healing response 5 years after everolimus-eluting bioresorbable vascular scaffold. J Am Coll Cardiol. 2014;64:2343–56.

    Article  PubMed  Google Scholar 

  255. Muthiah M, Islam MA, Cho CS, Hwang JE, Chung IJ, Park IK. Substrate-mediated delivery of microRNA-145 through a polysorbitol-based osmotically active transporter suppresses smooth muscle cell proliferation: implications for restenosis treatment. J Biomed Nanotechnol. 2014;10:571–9.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

Dr. Gaetano Santulli is supported by the National Institutes of Health (K99DK107895) and by the American Heart Association (AHA 15SDG25300007).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gaetano Santulli .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Santulli, G. (2015). microRNAs Distinctively Regulate Vascular Smooth Muscle and Endothelial Cells: Functional Implications in Angiogenesis, Atherosclerosis, and In-Stent Restenosis. In: Santulli, G. (eds) microRNA: Basic Science. Advances in Experimental Medicine and Biology, vol 887. Springer, Cham. https://doi.org/10.1007/978-3-319-22380-3_4

Download citation

Publish with us

Policies and ethics