Skip to main content

Waldenstrom’s Macroglobulinaemia: Immunosurveillance and the Immune Micro-environment

  • Chapter
  • First Online:
Waldenström’s Macroglobulinemia
  • 588 Accesses

Abstract

Understanding the interactions of the immune system and B-cell tumours has great therapeutic potential. Both in myeloma and Waldenstrom’s macroglobulinaemia (WM), there are measurable changes in the immune system with abnormalities of T-cells, NK cells and the ability to respond to external immunological stimuli. The homeostatic balance between the activation and suppression of immune antitumour effector cells in vivo is controlled by a network of cytokines and regulatory cells in a defined micro-environment. In myeloma, malignant plasma cells appear to have multiple mechanisms of inhibiting the antitumour immune response. These include inactivation of clonal cytotoxic T-cell, depression of NK and dendritic cell function and altering the regulatory T and pro-inflammatory Th17 cell balance in favour of a suppressive state. In addition, in myeloma, trogocytosis (demonstrated by malignant membrane transfer to T-cells) of plasma cells by T-lymphocytes results in the development of inhibitory Treg cells. In addition myeloid-derived suppressor cells (MDSC) are numerically increased, localised to the bone marrow micro-environment and functionally more active in patients with myeloma as compared to normal. The state of the immune homeostatic balance in WM has not yet been so clearly defined but results in the development of clonal cytotoxic T-cells, with possible abnormalities in Treg and Th17 populations and defects in NK cell function under active investigation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 139.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Owen RG, Treon SP, Al-Katib A, Fonseca R, Greipp PR, McMaster ML, Morra E, Pangalis GA, San Miguel JF, Branagan AR, Dimopoulos MA. Clinicopathological definition of Waldenstrom’s macroglobulinemia: consensus panel recommendations from the Second International Workshop on Waldenstrom’s Macroglobulinemia. Semin Oncol. 2003;30:110–5.

    Article  PubMed  Google Scholar 

  2. Naderi N, Yang DT. Lymphoplasmacytic lymphoma and Waldenstrom macroglobulinemia. Arch Pathol Lab Med. 2013;137:580–5.

    Article  CAS  PubMed  Google Scholar 

  3. Treon SP, Xu L, Yang G, Zhou Y, Liu X, Cao Y, Sheehy P, Manning RJ, Patterson CJ, Tripsas C, Arcaini L, Pinkus GS, Rodig SJ, Sohani AR, Harris NL, Laramie JM, Skifter DA, Lincoln SE, Hunter ZR. MYD88 L265P somatic mutation in Waldenstrom’s macroglobulinemia. N Engl J Med. 2012;367:826–33.

    Article  CAS  PubMed  Google Scholar 

  4. Garcia-Sanz R, Montoto S, Torrequebrada A, de Coca AG, Petit J, Sureda A, Rodriguez-Garcia JA, Masso P, Perez-Aliaga A, Monteagudo MD, Navarro I, Moreno G, Toledo C, Alonso A, Besses C, Besalduch J, Jarque I, Salama P, Rivas JA, Navarro B, Blade J, Miguel JF. Waldenstrom macroglobulinaemia: presenting features and outcome in a series with 217 cases. Br J Haematol. 2001;115:575–82.

    Article  CAS  PubMed  Google Scholar 

  5. Kriangkum J, Taylor BJ, Strachan E, Mant MJ, Reiman T, Belch AR, Pilarski LM. Impaired class switch recombination (CSR) in Waldenstrom macroglobulinemia (WM) despite apparently normal CSR machinery. Blood. 2006;107:2920–7.

    Article  CAS  PubMed  Google Scholar 

  6. Sahota SS, Forconi F, Ottensmeier CH, Provan D, Oscier DG, Hamblin TJ, Stevenson FK. Typical Waldenstrom macroglobulinemia is derived from a B-cell arrested after cessation of somatic mutation but prior to isotype switch events. Blood. 2002;100:1505–7.

    CAS  PubMed  Google Scholar 

  7. Sahota SS, Forconi F, Ottensmeier CH, Stevenson FK. Origins of the malignant clone in typical Waldenstrom’s macroglobulinemia. Semin Oncol. 2003;30:136–41.

    Article  CAS  PubMed  Google Scholar 

  8. Pruzanski W, Shumak KH. Biologic activity of cold-reacting autoantibodies (first of two parts). N Engl J Med. 1977;297:538–42.

    Article  CAS  PubMed  Google Scholar 

  9. Pruzanski W, Shumak KH. Biologic activity of cold-reacting autoantibodies (second of two parts). N Engl J Med. 1977;297:583–9.

    Article  CAS  PubMed  Google Scholar 

  10. Ropper AH, Gorson KC. Neuropathies associated with paraproteinemia. N Engl J Med. 1998;338:1601–7.

    Article  CAS  PubMed  Google Scholar 

  11. Grass S, Preuss KD, Wikowicz A, Terpos E, Ziepert M, Nikolaus D, Yang Y, Fadle N, Regitz E, Dimopoulos MA, Treon SP, Hunter ZR, Pfreundschuh M. Hyperphosphorylated paratarg-7: a new molecularly defined risk factor for monoclonal gammopathy of undetermined significance of the IgM type and Waldenstrom macroglobulinemia. Blood. 2011;117:2918–23.

    Article  CAS  PubMed  Google Scholar 

  12. Kristinsson SY, Koshiol J, Bjorkholm M, Goldin LR, McMaster ML, Turesson I, Landgren O. Immune-related and inflammatory conditions and risk of lymphoplasmacytic lymphoma or Waldenstrom macroglobulinemia. J Natl Cancer Inst. 2010;102:557–67.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Lindqvist EK, Goldin LR, Landgren O, Blimark C, Mellqvist UH, Turesson I, Wahlin A, Bjorkholm M, Kristinsson SY. Personal and family history of immune-related conditions increase the risk of plasma cell disorders: a population-based study. Blood. 2011;118:6284–91.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Giordano TP, Henderson L, Landgren O, Chiao EY, Kramer JR, El-Serag H, Engels EA. Risk of non-Hodgkin lymphoma and lymphoproliferative precursor diseases in US veterans with hepatitis C virus. JAMA. 2007;297:2010–7.

    Article  CAS  PubMed  Google Scholar 

  15. Treon SP, Hunter ZR, Aggarwal A, Ewen EP, Masota S, Lee C, Santos DD, Hatjiharissi E, Xu L, Leleu X, Tournilhac O, Patterson CJ, Manning R, Branagan AR, Morton CC. Characterization of familial Waldenstrom’s macroglobulinemia. Ann Oncol. 2006;17:488–94.

    Article  CAS  PubMed  Google Scholar 

  16. Ogmundsdottir HM, Steingrimsdottir H, Haraldsdottir V. Familial paraproteinemia: hyper-responsive B-cells as endophenotype. Clin Lymphoma Myeloma Leuk. 2011;11:82–4.

    Article  PubMed  Google Scholar 

  17. Leleu X, Jia X, Runnels J, Ngo HT, Moreau AS, Farag M, Spencer JA, Pitsillides CM, Hatjiharissi E, Roccaro A, O’Sullivan G, McMillin DW, Moreno D, Kiziltepe T, Carrasco R, Treon SP, Hideshima T, Anderson KC, Lin CP, Ghobrial IM. The Akt pathway regulates survival and homing in Waldenstrom macroglobulinemia. Blood. 2007;110:4417–26.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Tournilhac O, Santos DD, Xu L, Kutok J, Tai YT, Le Gouill S, Catley L, Hunter Z, Branagan AR, Boyce JA, Munshi N, Anderson KC, Treon SP. Mast cells in Waldenstrom’s macroglobulinemia support lymphoplasmacytic cell growth through CD154/CD40 signaling. Ann Oncol. 2006;17:1275–82.

    Article  CAS  PubMed  Google Scholar 

  19. Ho AW, Hatjiharissi E, Ciccarelli BT, Branagan AR, Hunter ZR, Leleu X, Tournilhac O, Xu L, O’Connor K, Manning RJ, Santos DD, Chemaly M, Patterson CJ, Soumerai JD, Munshi NC, McEarchern JA, Law CL, Grewal IS, Treon SP. CD27-CD70 interactions in the pathogenesis of Waldenstrom macroglobulinemia. Blood. 2008;112:4683–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Azab F, Azab AK, Maiso P, Calimeri T, Flores L, Liu Y, Quang P, Roccaro AM, Sacco A, Ngo HT, Zhang Y, Morgan BL, Carrasco RD, Ghobrial IM. Eph-B2/ephrin-B2 interaction plays a major role in the adhesion and proliferation of Waldenstrom’s macroglobulinemia. Clin Cancer Res. 2012;18:91–104.

    Article  CAS  PubMed  Google Scholar 

  21. Wong TW, Kita H, Hanson CA, Walters DK, Arendt BK, Jelinek DF. Induction of malignant plasma cell proliferation by eosinophils. PLoS One. 2013;8, e70554.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Elsawa SF, Novak AJ, Ziesmer SC, Almada LL, Hodge LS, Grote DM, Witzig TE, Fernandez-Zapico ME, Ansell SM. Comprehensive analysis of tumor microenvironment cytokines in Waldenstrom macroglobulinemia identifies CCL5 as a novel modulator of IL-6 activity. Blood. 2011;118:5540–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Hodge LS, Ziesmer SC, Yang ZZ, Secreto FJ, Novak AJ, Ansell SM. Constitutive activation of STAT5A and STAT5B regulates IgM secretion in Waldenstrom’s macroglobulinemia. Blood. 2014;123:1055–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Liu SM, King C. IL-21-producing Th cells in immunity and autoimmunity. J Immunol. 2013;191:3501–6.

    Article  CAS  PubMed  Google Scholar 

  25. Hodge LS, Elsawa SF, Grote DM, Price-Troska TL, Asmann YW, Fonseca R, Gertz MA, Witzig TE, Novak AJ, Ansell SM. MicroRNA expression in tumor cells from Waldenstrom’s macroglobulinemia reflects both their normal and malignant cell counterparts. Blood Cancer J. 2011;1, e24.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Roccaro AM, Sacco A, Chen C, Runnels J, Leleu X, Azab F, Azab AK, Jia X, Ngo HT, Melhem MR, Burwick N, Varticovski L, Novina CD, Rollins BJ, Anderson KC, Ghobrial IM. microRNA expression in the biology, prognosis, and therapy of Waldenstrom macroglobulinemia. Blood. 2009;113:4391–402.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Sacco A, Maiso P, Azab A, Azab F, Zhang Y, Liu Y, Ngo HT, Morgan B, Quang P, Issa G, Ghobrial IM, Roccaro AM. Key role of microRNAs in Waldenstrom’s macroglobulinemia pathogenesis. Clin Lymphoma Myeloma Leuk. 2011;11:109–11.

    Article  CAS  PubMed  Google Scholar 

  28. Sacco A, Zhang Y, Maiso P, Manier S, Rossi G, Treon SP, Ghobrial IM, Roccaro AM. microRNA aberrations in Waldenstrom macroglobulinemia. Clin Lymphoma Myeloma Leuk. 2013;13:205–7.

    Article  CAS  PubMed  Google Scholar 

  29. Wong CK, Lau KM, Chan IH, Hu S, Lam YY, Choi AO, Lam CW. MicroRNA-21* regulates the prosurvival effect of GM-CSF on human eosinophils. Immunobiology. 2013;218:255–62.

    Article  CAS  PubMed  Google Scholar 

  30. Montagner S, Deho L, Monticelli S. MicroRNAs in hematopoietic development. BMC Immunol. 2014;15:14.

    Article  PubMed  PubMed Central  Google Scholar 

  31. Vigorito E, Perks KL, Abreu-Goodger C, Bunting S, Xiang Z, Kohlhaas S, Das PP, Miska EA, Rodriguez A, Bradley A, Smith KG, Rada C, Enright AJ, Toellner KM, Maclennan IC, Turner M. microRNA-155 regulates the generation of immunoglobulin class-switched plasma cells. Immunity. 2007;27:847–59.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Sze DM, Giesajtis G, Brown RD, Raitakari M, Gibson J, Ho J, Baxter AG, Fazekas de St Groth B, Basten A, Joshua DE. Clonal cytotoxic T cells are expanded in myeloma and reside in the CD8(+)CD57(+)CD28(-) compartment. Blood. 2001;98:2817–27.

    Article  CAS  PubMed  Google Scholar 

  33. Raitakari M, Brown RD, Gibson J, Joshua DE. T cells in myeloma. Hematol Oncol. 2003;21:33–42.

    Article  CAS  PubMed  Google Scholar 

  34. Raitakari M, Brown RD, Sze D, Yuen E, Barrow L, Nelson M, Pope B, Esdale W, Gibson J, Joshua DE. T-cell expansions in patients with multiple myeloma have a phenotype of cytotoxic T cells. Br J Haematol. 2000;110:203–9.

    Article  CAS  PubMed  Google Scholar 

  35. Brown RD, Yuen E, Nelson M, Gibson J, Joshua D. The prognostic significance of T cell receptor beta gene rearrangements and idiotype-reactive T cells in multiple myeloma. Leukemia. 1997;11:1312–7.

    Article  CAS  PubMed  Google Scholar 

  36. Brown RD, Spencer A, Ho PJ, Kennedy N, Kabani K, Yang S, Sze DM, Aklilu E, Gibson J, Joshua DE. Prognostically significant cytotoxic T cell clones are stimulated after thalidomide therapy in patients with multiple myeloma. Leuk Lymphoma. 2009;50:1860–4.

    Article  CAS  PubMed  Google Scholar 

  37. Li J, Sze DM, Brown RD, Cowley MJ, Kaplan W, Mo SL, Yang S, Aklilu E, Kabani K, Loh YS, Yamagishi T, Chen Y, Ho PJ, Joshua DE. Clonal expansions of cytotoxic T cells exist in the blood of patients with Waldenstrom macroglobulinemia but exhibit anergic properties and are eliminated by nucleoside analogue therapy. Blood. 2010;115:3580–8.

    Article  CAS  PubMed  Google Scholar 

  38. Cohen Y, Da’as N, Libster D, Amir G, Berrebi A, Polliack A. Large-cell transformation of chronic lymphocytic leukemia and follicular lymphoma during or soon after treatment with fludarabine-rituximab-containing regimens: natural history- or therapy-related complication? Eur J Haematol. 2002;68:80–3.

    Article  CAS  PubMed  Google Scholar 

  39. Ling S, Joshua DE, Gibson J, Young G, Iland H, Watson G, Ho PJ. Transformation and progression of Waldenstrom’s macroglobulinemia following cladribine therapy in two cases: natural evolution or iatrogenic causation? Am J Hematol. 2006;81:110–4.

    Article  CAS  PubMed  Google Scholar 

  40. Lim Z, Cassells R, Giles A, Cheow HK, Mir N. Diffuse large B-cell lymphoma developing following treatment of Waldenstrom’s macroglobulinaemia: spontaneous resolution upon cessation of fludarabine. Leuk Lymphoma. 2007;48:1638–40.

    Article  CAS  PubMed  Google Scholar 

  41. Leleu X, Soumerai J, Roccaro A, Hatjiharissi E, Hunter ZR, Manning R, Ciccarelli BT, Sacco A, Ioakimidis L, Adamia S, Moreau AS, Patterson CJ, Ghobrial IM, Treon SP. Increased incidence of transformation and myelodysplasia/acute leukemia in patients with Waldenstrom macroglobulinemia treated with nucleoside analogs. J Clin Oncol. 2009;27:250–5.

    Article  PubMed  Google Scholar 

  42. Leleu X, Tamburini J, Roccaro A, Morel P, Soumerai J, Levy V, Wemeau M, Balkaran S, Poulain S, Hunter ZR, Ghobrial IM, Treon SP, Leblond V. Balancing risk versus benefit in the treatment of Waldenstrom’s Macroglobulinemia patients with nucleoside analogue-based therapy. Clin Lymphoma Myeloma. 2009;9:71–3.

    Article  CAS  PubMed  Google Scholar 

  43. Svaldi M, Lanthaler AJ, Dugas M, Lohse P, Pescosta N, Straka C, Mitterer M. T-cell receptor excision circles: a novel prognostic parameter for the outcome of transplantation in multiple myeloma patients. Br J Haematol. 2003;122:795–801.

    Article  CAS  PubMed  Google Scholar 

  44. Brown R, Murray A, Pope B, Sze DM, Gibson J, Ho PJ, Hart D, Joshua D. Either interleukin-12 or interferon-gamma can correct the dendritic cell defect induced by transforming growth factor beta in patients with myeloma. Br J Haematol. 2004;125:743–8.

    Article  CAS  PubMed  Google Scholar 

  45. Brown RD, Pope B, Murray A, Esdale W, Sze DM, Gibson J, Ho PJ, Hart D, Joshua D. Dendritic cells from patients with myeloma are numerically normal but functionally defective as they fail to up-regulate CD80 (B7-1) expression after huCD40LT stimulation because of inhibition by transforming growth factor-beta1 and interleukin-10. Blood. 2001;98:2992–8.

    Article  CAS  PubMed  Google Scholar 

  46. Turtle CJ, Brown RD, Joshua DE, Hart DN. DC in multiple myeloma immunotherapy. Cytotherapy. 2004;6:128–37.

    Article  CAS  PubMed  Google Scholar 

  47. Crespo J, Sun H, Welling TH, Tian Z, Zou W. T cell anergy, exhaustion, senescence, and stemness in the tumor microenvironment. Curr Opin Immunol. 2013;25:214–21.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Wherry EJ. T cell exhaustion. Nat Immunol. 2011;12:492–9.

    Article  CAS  PubMed  Google Scholar 

  49. Bryant C, Suen H, Brown R, Yang S, Favaloro J, Aklilu E, Gibson J, Ho PJ, Iland H, Fromm P, Woodland N, Nassif N, Hart D, Joshua DE. Long-term survival in multiple myeloma is associated with a distinct immunological profile, which includes proliferative cytotoxic T-cell clones and a favourable Treg/Th17 balance. Blood Cancer J. 2013;3, e148.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Larbi A, Fulop T. From “truly naive” to “exhausted senescent” T cells: when markers predict functionality. Cytometry A. 2014;85:25–35.

    Article  PubMed  Google Scholar 

  51. Terabe M, Berzofsky JA. The role of NKT cells in tumor immunity. Adv Cancer Res. 2008;101:277–348.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Steingrimsdottir H, Einarsdottir HK, Haraldsdottir V, Ogmundsdottir HM. Familial monoclonal gammopathy: hyper-responsive B cells in unaffected family members. Eur J Haematol. 2011;86:396–404.

    Article  CAS  PubMed  Google Scholar 

  53. Dhodapkar MV, Geller MD, Chang DH, Shimizu K, Fujii S, Dhodapkar KM, Krasovsky J. A reversible defect in natural killer T cell function characterizes the progression of premalignant to malignant multiple myeloma. J Exp Med. 2003;197:1667–76.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Richter J, Neparidze N, Zhang L, Nair S, Monesmith T, Sundaram R, Miesowicz F, Dhodapkar KM, Dhodapkar MV. Clinical regressions and broad immune activation following combination therapy targeting human NKT cells in myeloma. Blood. 2013;121:423–30.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Berzofsky JA, Terabe M. NKT cells in tumor immunity: opposing subsets define a new immunoregulatory axis. J Immunol. 2008;180:3627–35.

    Article  CAS  PubMed  Google Scholar 

  56. Talebian L, Fischer DA, Wu J, Channon JY, Sentman CL, Ernstoff MS, Meehan KR. The natural killer-activating receptor, NKG2D, on CD3+CD8+ T cells plays a critical role in identifying and killing autologous myeloma cells. Transfusion. 2014;54:1515–21.

    Article  CAS  PubMed  Google Scholar 

  57. Grote DMEA. Interactions between PD-1 and PD-L1 and PD-L2 promote malignant B cell growth in Waldenstroms macroglobulinemia. Blood Cancer J. 2013;122:4334.

    Google Scholar 

  58. Benson Jr DM, Bakan CE, Mishra A, Hofmeister CC, Efebera Y, Becknell B, Baiocchi RA, Zhang J, Yu J, Smith MK, Greenfield CN, Porcu P, Devine SM, Rotem-Yehudar R, Lozanski G, Byrd JC, Caligiuri MA. The PD-1/PD-L1 axis modulates the natural killer cell versus multiple myeloma effect: a therapeutic target for CT-011, a novel monoclonal anti-PD-1 antibody. Blood. 2010;116:2286–94.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Brimnes MK, Vangsted AJ, Knudsen LM, Gimsing P, Gang AO, Johnsen HE, Svane IM. Increased level of both CD4+FOXP3+ regulatory T cells and CD14+HLA-DR(-)/low myeloid-derived suppressor cells and decreased level of dendritic cells in patients with multiple myeloma. Scand J Immunol. 2010;72:540–7.

    Article  CAS  PubMed  Google Scholar 

  60. Favaloro J, Brown R, Aklilu E, Yang S, Suen H, Hart D, Fromm P, Gibson J, Khoo L, Ho PJ, Joshua D. Myeloma skews regulatory T and pro-inflammatory T helper 17 cell balance in favor of a suppressive state. Leuk Lymphoma. 2014;55:1090–8.

    Article  CAS  PubMed  Google Scholar 

  61. Favaloro J, Liyadipitiya T, Brown R, Yang S, Suen H, Woodland N, Nassif N, Hart D, Fromm P, Weatherburn C, Gibson J, Ho PJ, Joshua D. Myeloid derived suppressor cells are numerically, functionally and phenotypically different in patients with multiple myeloma. Leuk Lymphoma. 2014;55:2893–900.

    Article  CAS  PubMed  Google Scholar 

  62. Ramachandran IR, Martner A, Pisklakova A, Condamine T, Chase T, Vogl T, Roth J, Gabrilovich D, Nefedova Y. Myeloid-derived suppressor cells regulate growth of multiple myeloma by inhibiting T cells in bone marrow. J Immunol. 2013;190:3815–23.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Tadmor T. The growing link between multiple myeloma and myeloid derived suppressor cells. Leuk Lymphoma. 2014;55(12):2681–2.

    Article  PubMed  Google Scholar 

  64. Brown R, Kabani K, Favaloro J, Yang S, Ho PJ, Gibson J, Fromm P, Suen H, Woodland N, Nassif N, Hart D, Joshua D. CD86+ or HLA-G+ can be transferred via trogocytosis from myeloma cells to T cells and are associated with poor prognosis. Blood. 2012;120:2055–63.

    Article  CAS  PubMed  Google Scholar 

  65. Brown R, Yang S, Weatherburn C, Gibson J, Ho PJ, Suen H, Hart D, Joshua D. Phospho-flow detection of constitutive and cytokine-induced pSTAT3/5, pAKT and pERK expression highlights novel prognostic biomarkers for patients with multiple myeloma. Leukemia. 2015;29(2):483–90.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. E. Joshua .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Joshua, D.E., Brown, R., Ho, P.J., Gibson, J., Suen, H. (2017). Waldenstrom’s Macroglobulinaemia: Immunosurveillance and the Immune Micro-environment. In: Leblond, V., Treon, S., Dimoploulos, M. (eds) Waldenström’s Macroglobulinemia. Springer, Cham. https://doi.org/10.1007/978-3-319-22584-5_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-22584-5_8

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-22583-8

  • Online ISBN: 978-3-319-22584-5

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics