Skip to main content

Design of a Passive Gait-Based Lower-Extremity-Exoskeleton for Supporting Bodyweight

  • Conference paper
Intelligent Robotics and Applications

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 9246))

Abstract

This paper presents the design of a bodyweight-supporting lower-extremity-exoskeleton (LEE) with compliant joints to relieve compressive load in human knees during walking. Based on experimental measurements that relate plantar forces with gait phase, the design of a gait-based LEE is divided into BW-supporting and free-swinging and realized by means of built-in compliant mechanisms in its exoskeleton-knees. Design considerations to accommodate human knee geometry and adapt walking gaits are highlighted. The snap-fit mechanisms for human gait-based operations are illustrated and analyzed numerically. The effects of several different exoskeleton-knee designs on reducing plantar force are experimentally compared validating the effectiveness and light-weight advantages of LEE in reducing plantar force in walking.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Maly, M.R., Costigan, P.A., Olney, S.J.: Determinants of self-report mobility outcome measures in people with knee osteoarthritis. Arch. Phys. Med. Rehabil. 87(1), 96–104 (2006)

    Article  Google Scholar 

  2. Maly, M.R., Costigan, P.A., Olney, S.J.: Mechanical factors relate to pain in knee osteoarthritis. Clin. Biomech. 23(6), 796–805 (2008)

    Article  Google Scholar 

  3. Messier, S.P., Gutekunst, D.J., Davis, C., DeVita, P.: Weight loss reduces knee-joint loads in overweight and obese older adults with knee osteoarthritis. Arthritis & Rheumatism 52(7), 2026–2032 (2005)

    Article  Google Scholar 

  4. Andriacchi, T.P., Mündermann, A.: The role of ambulatory mechanics in the initiation and progression of knee osteoarthritis. Current Opinion in Rheumatology 18(5), 514–518 (2006)

    Article  Google Scholar 

  5. Kutzner, I., Heinlein, B., Graichen, F., Bender, A., Rohlmann, A., Halder, A., Beier, A., Bergmann, G.: Loading of the knee joint during activities of daily living measured in vivo in five subjects. J. Biomechanics 43(11), 2164–2173 (2010)

    Article  Google Scholar 

  6. Ikeuchi, Y., Ashihara, J., Hiki, Y., Kudoh, H., Noda, T.: Walking assist device with bodyweight support system. In: Proc. IEEE/RSJ Int. Conf. Intell. Robots Syst., Louis, USA, pp. 4073–4079 (2009)

    Google Scholar 

  7. Jamwal, P.K., Xie, S.Q., Hussain, S., Parsons, J.G.: An adaptive wearable parallel robot for the treatment of ankle injuries. IEEE/ASME Trans. Mechatronics 19(1), 64–75 (2014)

    Article  Google Scholar 

  8. Banala, S.K., Agrawal, S.K., Kim, S.H., Scholz, J.P.: Novel gait adaptation and neuromotor training results using an active leg exoskeleton. IEEE/ASME Trans. Mechatronics 15(2), 216–225 (2010)

    Article  Google Scholar 

  9. Lee, K.-M., Guo, J.: Kinematic and dynamic analysis of an anatomically based knee joint. J. Biomech. 43(7), 1231–1236 (2010)

    Article  Google Scholar 

  10. Wang, D., Lee, K.-M., Guo, J., Yang, C.-J.: Adaptive knee joint exoskeleton based on biological geometries. IEEE/ASME Trans. Mechatronics 19(4), 1268–1278 (2014)

    Article  Google Scholar 

  11. Ji, J., Lee, K.-M., Zhang, S.: Cantilever snap-fit performance analysis for haptic evaluation. ASME J. Mech. Design 133(12), 121004-1–121004-8 (2011)

    Article  Google Scholar 

  12. Yi, B.-J., Chung, G.B., Na, H.Y., Kim, W.K., Suh, I.H.: Design and experiment of a 3-dof parallel micromechanism utilizing flexure hinges. IEEE Trans. Robot. and Autom. 19(4), 604–612 (2003)

    Article  Google Scholar 

  13. Ji, J., Lee, K.-M., Guo, J., Zhang, S.: Discrete deformation models for real-time computation of compliant mechanisms in two and three dimensional space. IEEE/ASME Trans. Mechatronics 19(5), 1268–1278 (2014)

    Google Scholar 

  14. Lee, K.-M., Wang, D.: Design analysis of a passive weight-support lower-extremity-exoskeleton with compliant knee-joint. In: Proc. IEEE Int. Conf. Robot. Autom., Settle, USA (2015) (accepted)

    Google Scholar 

  15. Perry, J.: Gait analysis: normal and pathological function. Slack Incorporated, Thorofare (1992)

    Google Scholar 

  16. Krut, S., Benoit, M., Dombre, E., Pierrot, F.: Moonwalker, a lower limb exoskeleton able to sustain bodyweight using a passive force balancer. In: Proc. IEEE Int. Conf. Robot. Autom., Alaska, USA, pp. 2215–2220 (2010)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kok-Meng Lee .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this paper

Cite this paper

Lee, KM., Wang, D., Ji, J. (2015). Design of a Passive Gait-Based Lower-Extremity-Exoskeleton for Supporting Bodyweight. In: Liu, H., Kubota, N., Zhu, X., Dillmann, R. (eds) Intelligent Robotics and Applications. Lecture Notes in Computer Science(), vol 9246. Springer, Cham. https://doi.org/10.1007/978-3-319-22873-0_21

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-22873-0_21

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-22872-3

  • Online ISBN: 978-3-319-22873-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics