Skip to main content

Approximation Schemes for Multi-objective Optimization with Quadratic Constraints of Fixed CP-Rank

  • Conference paper
  • First Online:
Algorithmic Decision Theory (ADT 2015)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 9346))

Included in the following conference series:

Abstract

Motivated by the power allocation problem in AC (alternating current) electrical systems, we study the multi-objective (combinatorial) optimization problem where a constant number of (nonnegative) linear functions are simultaneously optimized over a given feasible set of 0–1 points defined by quadratic constraints. Such a problem is very hard to solve if no specific assumptions are made on the structure of the constraint matrices. We focus on the case when the constraint matrices are completely positive and have fixed cp-rank. We propose a polynomial-time algorithm which computes an \(\epsilon \)-Pareto curve for the studied multi-objective problem when both the number of objectives and the number of constraints are fixed, for any constant \(\epsilon >0\). This result is then applied to obtain polynomial-time approximation schemes (PTASes) for two NP-hard problems: multi-criteria power allocation and sum-of-ratios optimization.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Actually, this combinatorial optimization problem was first studied by Woeginger [35] under the name 2-weighted Knapsack, in terms of inapproximability.

  2. 2.

    The Equi-Partition is defined as follows: Given \((a_1,a_2,\ldots ,a_{2n})\in \mathbb {Z}^{2n}\) with \(\sum _{i=1}^{2n}a_i=2k\), does exist a subset \(S\subset \{1,2,\ldots ,{2n}\}\), \(|S|=n\), such that \(\sum _{i\in S}a_i=\sum _{i\not \in S}a_i=k?\).

References

  1. Anagnostopoulos, A., Grandoni, F., Leonardi, S., Wiese, A.: A mazing \(2+\epsilon \) approximation for unsplittable flow on a path. In: SODA, pp. 26–41 (2014)

    Google Scholar 

  2. Bansal, A., Chakrabarti, N., Epstein, A., Schieber, B.: A quasi-ptas for unsplittable flow on line graphs. In: STOC, pp. 721–729 (2006)

    Google Scholar 

  3. Bansal, N., Friggstad, Z., Khandekar, R., Salavatipour, M.R.: A logarithmic approximation for unsplittable flow on line graphs. In: SODA, pp. 702–709 (2009)

    Google Scholar 

  4. Bansal, N., Korula, N., Nagarajan, V., Srinivasan, A.: Solving packing integer programs via randomized rounding with alterations. Theory of Computing 8(1), 533–565 (2012)

    Article  MathSciNet  Google Scholar 

  5. Bar-Noy, A., Bar-Yehuda, R., Freund, A., Naor, J., Schieber, B.: A unified approach to approximating resource allocation and scheduling. In STOC, pp. 735–744 (2000)

    Google Scholar 

  6. Bartlett, M., Frisch, A.M., Hamadi, Y., Miguel, I., Tarim, S.A., Unsworth, C.: The temporal knapsack problem and its solution. In: Barták, R., Milano, M. (eds.) CPAIOR 2005. LNCS, vol. 3524, pp. 34–48. Springer, Heidelberg (2005)

    Google Scholar 

  7. Bazgan, C., Gourvès, L., Monnot, J.: Approximation with a fixed number of solutions of some multiobjective maximization problems. J. Discrete Algorithms 22, 19–29 (2013)

    Article  MathSciNet  Google Scholar 

  8. Bazgan, C., Gourvès, L., Monnot, J., Pascual, F.: Single approximation for the biobjective max TSP. Theor. Comput. Sci. 478, 41–50 (2013)

    Google Scholar 

  9. Bazgan, C., Hugot, H., Vanderpooten, D.: Solving efficiently the 0–1 multi-objective knapsack problem. Comput. & OR 36(1), 260–279 (2009)

    Google Scholar 

  10. Berman, A., Shaked-Monderer, N.: Completely Positive Matrices. World Scientific, Singapore (2003)

    Google Scholar 

  11. Calinescu, G., Chakrabarti, A., Karloff, H., Rabani, Y.: Improved approximation algorithms for resource allocation. In: Cook, W.J., Schulz, A.S. (eds.) IPCO 2002. LNCS, vol. 2337, pp. 401–414. Springer, Heidelberg (2002)

    Google Scholar 

  12. Chakrabarti, A., Chekuri, C., Gupta, A., Kumar, A.: Approximation algorithms for the unsplittable flow problem. Algorithmica 47(1), 53–78 (2007)

    Google Scholar 

  13. Chau, C., Elbassioni, K., Khonji, M.: Truthful mechanisms for combinatorial ac electric power allocation. In: AAMAS, pp. 1005–1012 (2014)

    Google Scholar 

  14. Cheng, T., Janiak, A., Kovalyov, M.: Bicriterion single machine scheduling with resource dependent processing times. SIAM J. Optim. 8(2), 617–630 (1998)

    Google Scholar 

  15. Diakonikolas, I.: Approximation of Multiobjective Optimization Problems. PhD thesis, Deptartment of Computer Science, Columbia University, May 2011

    Google Scholar 

  16. Diakonikolas, I., Yannakakis, M.: Small approximate pareto sets for biobjective shortest paths and other problems. SIAM J. Comput. 39(4), 1340–1371 (2009)

    Google Scholar 

  17. Dickinson, P., Gijben, L.: On the computational complexity of membership problems for the completely positive cone and its dual. Comput. Optim. Appl. 57(2), 403–415 (2014)

    Google Scholar 

  18. Ehrgott, M.: Multicriteria Optimization. Springer, Heidelberg (2005)

    Google Scholar 

  19. Ehrgott, M., Gandibleux, X.: Multiple Criteria Optimization: State of the Art Annotated Bibliographical Surveys. Kluwer, Boston (2002)

    Google Scholar 

  20. Elbassioni, K., Nguyen,T.T.: Approximation schemes for binary quadratic programming problems with low cp-rank decompositions. CoRR (2014). abs/1411.5050

  21. Erlebach, T., Kellerer, H., Pferschy, U.: Approximating multiobjective knapsack problems. Manage. Sci. 48(12), 1603–1612 (2002)

    Google Scholar 

  22. Escoffier, B., Gourvès, L., Monnot, J.: Fair solutions for some multiagent optimization problems. Auton. Agent. Multi-Agent Syst. 26(2), 184–201 (2013)

    Google Scholar 

  23. Frieze, A., Clarke, M.: Approximation algorithms for the \(m\)-dimensional 0–1 knapsack problem: worst-case and probabilistic analyses. Eur. J. Oper. Res. 15, 100–109 (1984)

    Google Scholar 

  24. Gandibleux, X., Freville, A.: Tabu search based procedure for solving the 0–1 multiobjective knapsack problem: the two objective case. J. Heuristics 6, 361–383 (2000)

    Google Scholar 

  25. Grainger, J., Stevenson, W.: Power System Analysis. McGraw-Hill, New York (1994)

    Google Scholar 

  26. Hong, S.-P., Chung, S.-J., Park, B.H.: A fully polynomial bicriteria approximation scheme for the constrained spanning tree problem. Oper. Res. Lett. 32(3), 233–239 (2004)

    Google Scholar 

  27. Kellerer, H., Pferschy, U., Pisinger, D.: Knapsack Problems. Springer, Heidelberg (2004)

    Google Scholar 

  28. Leonardi, S., Marchetti-Spaccamela, A., Vitaletti, A.: Approximation algorithms for bandwidth and storage allocation problems under real time constraints. In: FSTTCS, pp. 409–420 (2000)

    Google Scholar 

  29. Mittal, S., Schulz, A.: A general framework for designing approximation schemes for combinatorial optimization problems with many objectives combined into one. Oper. Res. 61(2), 386–397 (2013)

    Google Scholar 

  30. Nemirovski, A., Todd, M.: Interior-point methods for optimization. Acta Numerica 17, 191–234 (2008)

    Google Scholar 

  31. Papadimitriou, C., Yannakakis, M.: On the approximability of trade-offs and optimal access of web sources. In: FOCS, pp. 86–92 (2000)

    Google Scholar 

  32. Schaible, S., Shi, J.: Fractional programming: the sum-of-ratios case. Optim. Methods Softw. 18, 219–229 (2003)

    Google Scholar 

  33. Schrijver, A.: Theory of Linear and Integer Programming. Wiley, New York (1986)

    Google Scholar 

  34. Tsaggouris, G., Zaroliagis, C.D.: Multiobjective optimization: improved FPTAS for shortest paths and non-linear objectives with applications. Theory Comput. Syst. 45(1), 162–186 (2009)

    Google Scholar 

  35. Woeginger, G.J.: When does a dynamic programming formulation guarantee the existence of an FPTAS?. In: SODA, pp. 820–829 (1999)

    Google Scholar 

  36. Woeginger, G.J.: When does a dynamic programming formulation guarantee the existence of a fully polynomial time approximation scheme (FPTAS)? INFORMS J. Comput. 12(1), 57–74 (2000)

    Google Scholar 

  37. Yu, L., Chau, C.: Complex-demand knapsack problems and incentives in ac power systems. In: AAMAS, pp. 973–980 (2013)

    Google Scholar 

Download references

Acknowledgments

We would like to thank Gerhard Woeginger for helpful discussions, especially for pointing us the papers [35, 36]. We thank the ADT-15 reviewers for their helpful comments, suggestions and insights that have helped us improve our manuscript. This work was supported by the MI-MIT Flagship project 13CAMA1.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Trung Thanh Nguyen .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this paper

Cite this paper

Elbassioni, K., Nguyen, T.T. (2015). Approximation Schemes for Multi-objective Optimization with Quadratic Constraints of Fixed CP-Rank. In: Walsh, T. (eds) Algorithmic Decision Theory. ADT 2015. Lecture Notes in Computer Science(), vol 9346. Springer, Cham. https://doi.org/10.1007/978-3-319-23114-3_17

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-23114-3_17

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-23113-6

  • Online ISBN: 978-3-319-23114-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics