Skip to main content

Plant Responses and Tolerance to High Temperature Stress: Role of Exogenous Phytoprotectants

  • Chapter
Crop Production and Global Environmental Issues

Abstract

Among the abiotic stresses high temperature stress is one of the most detrimental stresses threatening higher plant productivity and survival throughout the world. Each degree Celsius increase of average growing season temperature may decrease crop yield and affect plant distribution. On the other hand, global average temperatures are supposed to increase from 1.8 to 4.0 °C or higher by 2100 as compared to the 1980–2000 average. Plants are intimidated by adverse effects of high temperature stresses. Protein denaturation, inactivation of enzymes, production of reactive oxygen species, and disruption of membrane structure are some of the primary damage effects of high temperature that are also responsible for damage of ultrastructural cellular components. These anomalies hamper plant growth and development. Although higher plants develop their own defense strategies to overcome the high temperature stress effects, these often are not enough, therefore substantial damage is observed. The metabolism in plants is altered in response to high temperature stress. The antioxidants, secondary metabolites, hormones, osmoprotectants, and many other essential biomolecules are modulated, which help to defend against high temperature impacts. Moreover, numerous studies have proved that as protectants the exogenously applied hormones, osmoregulators, antioxidants, signaling molecules, polyamines, and trace elements confer high temperature stress tolerance in the organisms. This chapter presents the responses of plants to high temperature stress and evaluates the role of exogenous protectants under high temperature stress.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 219.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 279.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 279.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abass M, Rajashekar CB (1993) Abscisic acid accumulation in leaves and cultured cells during heat acclimation in grapes. Hortscience 28:50–52

    CAS  Google Scholar 

  • Agarie S, Hanaoka N, Ueno O, Miyazaki A, Kubota F, Agata W, Kaufman PB (1998) Effects of silicon on tolerance to water deficit and heat stress in rice plants (Oryza sativa L.), monitored by electrolyte leakage. Plant Prod Sci 1:96–103

    Article  Google Scholar 

  • Ahamed KU, Nahar K, Fujita M, Hasanuzzaman M (2010) Variation in plant growth, tiller dynamics and yield components of wheat (Triticum aestivum L.) due to high temperature stress. Adv Agric Bot 2:213–224

    Google Scholar 

  • Ahmad A, Diwan H, Abrol YP (2010) Global climate change, stress and plant productivity. In: Pareek A, Sopory SK, Bohnert HJ, Govindjee (eds) Abiotic stress adaptation in plants: physiological, molecular and genome foundation. Springer, New York, pp 503–521

    Google Scholar 

  • Ahmad P, Kumar A, Gupta A, Hu X, Hakeem KR, Azooz MM, Sharma S (2012) Polyamines: role in plants under abiotic stress. In: Ashraf M, Ozturk M, Ahmad MSA, Aksoy A (eds) Crop production for agricultural improvement. Springer, Dordrecht, pp 490–512

    Google Scholar 

  • Ahmad P, Ozturk M, Sharma S, Gucel S (2013) Effect of sodium carbonate induced salinity-alkalinity on some key osmoprotectants protein profile antioxidant enzymes and lipid peroxidation in two mulberry (Morus alba L.) cultivars. J Plant Interact 9:460–467

    Google Scholar 

  • Ahmed JU, Hasan MA (2011) Evaluation of seedling Pro content of wheat genotypes in relation to heat tolerance. Bangladesh J Bot 40:17–22

    Article  Google Scholar 

  • Akman Z (2009) Comparison of high temperature tolerance in maize, rice and sorghum seeds by plant growth regulators. J Anim Vet Adv 8:358–361

    CAS  Google Scholar 

  • Alcázar R, Cuevas JC, Patrón M, Altabella T, Tiburcio AF (2006) Abscisic acid modulates polyamine metabolism under water stress in Arabidopsis thaliana. Plant Physiol 128:448–455

    Article  CAS  Google Scholar 

  • Alia, Hayashi H, Sakamoto A, Murata N (1998) Enhancement of the tolerance of Arabidopsis to high temperatures by genetic engineering of the synthesis of glycinebetaine. Plant J 16:155–161

    Article  CAS  PubMed  Google Scholar 

  • Allakhverdiev SI, Los DA, Mohanty P, Nishiyama Y, Murata N (2007) Glycinebetaine alleviates the inhibitory effect of moderate heat stress on the repair of photosystem II during photoinhibition. Biochim Biophys Acta 1767:1363–1371

    Article  CAS  PubMed  Google Scholar 

  • Allakhverdiev SI, Kreslavski VD, Klimov VV, Los DA, Carpentier R, Mohanty P (2008) Heat stress: an overview of molecular responses in photosynthesis. Photosynth Res 98:541–550

    Article  CAS  PubMed  Google Scholar 

  • Almeida AM, Villalobos E, Araújo SS, Leyman B, Dijck PV, Alfaro-Cardoso L, Fevereiro PS, Torné JM, Santos DM (2005) Transformation of tobacco with an Arabidopsis thaliana gene involved in trehalose biosynthesis increases tolerance to several abiotic stresses. Euphytica 146:165–176

    Article  CAS  Google Scholar 

  • Almeselmani M, Deshmukh PS, Sairam RK (2009) High temperature stress tolerance in wheat genotypes: role of antioxidant defence enzymes. Acta Agron Hung 57:1–14

    Article  CAS  Google Scholar 

  • Alonso-Ramírez A, Rodríguez D, Reyes D, Jiménez JA, Nicolás G, López-Climent M, Gómez-Cadenas A, Nicolás C (2009a) Evidence for a role of gibberellins in salicylic acid-modulated early plant responses to abiotic stress in Arabidopsis seeds. Plant Physiol 150:1335–1344

    Article  PubMed Central  PubMed  Google Scholar 

  • Alonso-Ramírez A, Rodríguez D, Reyes D, Jiménez JA, Nicolás G, López-Climent M, Gómez-Cadenas A, Nicolás C (2009b) Cross-talk between gibberellins and salicylic acid in early stress responses in Arabidopsis thaliana seeds. Plant Signal Behav 48:750–751

    Article  Google Scholar 

  • Arasimowicz M, Floryszak-Wieczorek J (2007) Nitric oxide as a bioactive signalling molecule in plant stress responses. Plant Sci 172:876–887

    Article  CAS  Google Scholar 

  • Argyris J, Truco MJ, Ochoa O, McHale M, Dahal P, Van Deynze A, Michelmore RW, Bradford KJ (2011) A gene encoding an abscisic acid biosynthetic enzyme (LsNCED4) collocates with the high temperature germination locus Htg6.1 in lettuce (Lactuca sp.). Theor Appl Genet 122:95–108

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Asada K (2006) Production and scavenging of reactive oxygen species in chloroplasts and their functions. Plant Physiol 141:391–396

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Ashraf M, Foolad MR (2007) Roles of glycinebetaine and Pro in improving plant abiotic resistance. Environ Exp Bot 59:206–216

    Article  CAS  Google Scholar 

  • Ashraf M, Hafeez M (2004) Thermotolerance of pearl millet and maize at early growth stages: growth and nutrient relations. Biol Plant 48:81–86

    Article  CAS  Google Scholar 

  • Ashraf M, Ozturk M, Ahmad MSA, Aksoy A (eds) (2012) Crop production for agricultural improvement. Springer Science+Business Media, New York, 796 p

    Google Scholar 

  • Athar HR, Khan A, Ashraf M (2008) Exogenously applied ascorbic acid alleviates salt-induced oxidative stress in wheat. Environ Exp Bot 63:224–231

    Article  CAS  Google Scholar 

  • Bae H, Herman E, Bailey B, Bae HJ, Sicher R (2005) Exogenous trehalose alters Arabidopsis transcripts involved in cell wall modification, abiotic stress, nitrogen metabolism, and plant defense. Physiol Plant 125:114–126

    Article  CAS  Google Scholar 

  • Bajguz A, Tretyn A (2003) The chemical characteristic and distribution of brassinosteroids in plants. Phytochemistry 62:1027–1046

    Article  CAS  PubMed  Google Scholar 

  • Baliyan SP, Rao KSM, Baliyan PS, Mahabile M (2013) The effects of 4-chlorophenoxyacetic acid plant growth regulator on the fruit set, yield and economic benefit of growing tomatoes in high temperatures. Int J Agric Sci Res 3:29–36

    Google Scholar 

  • Balla K, Bencze S, Janda T, Veisz O (2009) Analysis of heat stress tolerance in winter wheat. Acta Agron Hung 57:437–444

    Article  Google Scholar 

  • Bañnon S, Fernandez JA, Franco JA, Torrecillas A, Alarćon JJ, Sánchez-Blanco MJ (2004) Effects of water stress and night temperature preconditioning on water relations and morphological and anatomical changes of Lotus creticus plants. Sci Hortic 101:333–342

    Article  Google Scholar 

  • Barnabás B, Jäger K, Fehér A (2008) The effect of drought and heat stress on reproductive processes in cereals. Plant Cell Environ 31:11–38

    PubMed  Google Scholar 

  • Bavita A, Shashi B, Navtej SB (2012) Nitric oxide alleviates oxidative damage induced by high temperature stress in wheat. Indian J Exp Biol 50:372–8

    CAS  PubMed  Google Scholar 

  • Berry JA, Raison JK (1981) Responses of macrophytes to temperature. In: Lange et al (eds) Encyclopedia of plant physiology, physiological plant ecology I A, New Series, Vol 12A. Springer, New York, pp 277–338

    Chapter  Google Scholar 

  • Bita CE, Gerats T (2013) Plant tolerance to high temperature in a changing environment: scientific fundamentals and production of heat stress-tolerant crops. Front Plant Sci. doi:10.3389/fpls.2013.00273

    PubMed Central  PubMed  Google Scholar 

  • Brestic M, Zivcak M, Olsovska K, Kalaji HM, Shao H, Hakeem KR (2014) Heat signaling and stress responses in photosynthesis. In: Hakeem KR et al (eds) Plant signaling: understanding the molecular crosstalk. Springer, Berlin, pp 241–256

    Chapter  Google Scholar 

  • Cao YY, Duan H, Yang LN, Wang ZQ, Zhou SC, Yang JC (2008) Effect of heat stress during meiosis on grain yield of rice cultivars differing in heat tolerance and its physiological mechanism. Acta Agron Sin 34:2134–2142

    Article  Google Scholar 

  • Cao YY, Duan H, Yang LN, Wang ZQ, Liu LJ, Yang JC (2009) Effect of high temperature during heading and early filling on grain yield and physiological characteristics in indica rice. Acta Agron Sin 35:512–521

    CAS  Google Scholar 

  • Cavusoglu K, Kabar K (2007) Comparative effects of some plant growth regulators on the germination of barley and radish seeds under high temperature stress. Eurasia J Biosci 1:1–10

    Google Scholar 

  • Çavusoglu K, Kabar K (2010) Effects of hydrogen peroxide on the germination and early seedling growth of barley under NaCl and high temperature stresses. Eurasia J Biosci 4:70–79

    Article  CAS  Google Scholar 

  • Çelik H, Zenginbal H, Özcan M (2006) Enhancing germination of kiwifruit seeds with temperature, medium and gibberelic acid. Hort Sci (Prague) 33(1):39–45

    Google Scholar 

  • Chakraborty U, Tongden C (2005) Evaluation of heat acclimation and salicylic acid treatments as potent inducers of thermotolerance in Cicer arietinum L. Curr Sci 89:384–389

    CAS  Google Scholar 

  • Chauhan S (2005) Physiological and molecular basis of heat tolerance with emphasis on oxidative stress metabolism in wheat. PhD thesis, HNB Garhwal University, Srinagar

    Google Scholar 

  • Chen J, Wang P, Mi H-L, Chen G-Y, Xu D-Q (2010) Reversible association of ribulose-1,5-bisphosphate carboxylase/oxygenase activase with the thylakoid membrane depends upon the ATP level and pH in rice without heat stress. J Exp Bot 61:2939–2950

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Cheng L, Zou Y, Ding S, Zhang J, Yu X, Cao J, Lu G (2009) Polyamine accumulation in transgenic tomato enhances the tolerance to high temperature stress. J Integr Plant Biol 51:489–499

    Article  CAS  PubMed  Google Scholar 

  • Chinnusamy V, Gong Z, Zhu JK (2008) Abscisic acid-mediated epigenetic processes in plant development and stress responses. J Integr Plant Biol 50:1187–95

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Chu TM, Aspinall D, Paleg LG (1974) Stress metabolism. VI. Temperature stress and the accumulation of Pro in barley and radish. Aust J Plant Physiol 1:87–89

    Article  CAS  Google Scholar 

  • Clarke SM, Cristescu SM, Miersch O, Harren FJM, Wasternack C, Mur LAJ (2009) Jasmonates act with salicylic acid to confer basal thermotolerance in Arabidopsis thaliana. New Phytol 182:175–87

    Article  CAS  PubMed  Google Scholar 

  • Corbineau F, Picard MA, Come D (1994) Effects of temperature, oxygen and osmotic pressure on germination of carrot seeds: evaluation of seed quality. Acta Hortic 354:9–16

    Article  Google Scholar 

  • Crawford AJ, McLachlan DH, Hetherington AM, Franklin KA (2012) High temperature exposure increases plant cooling capacity. Curr Biol 22:396–397

    Article  CAS  Google Scholar 

  • Crowe JH (2007) Trehalose as a “chemical chaperone”: fact and fantasy. Adv Exp Med Biol 594: 143–158

    Article  PubMed  Google Scholar 

  • Cvetkovska M, Rampitsch C, Bykova N, Xing T (2005) Genomic analysis of MAP kinase cascades in Arabidopsis defense responses. Plant Mol Biol Rep 23:331–343

    Article  CAS  Google Scholar 

  • Cvikrová M, Gemperlová L, Dobrá J, Martincová O, Prásil IT, Gubisc J, Vanková R (2012) Effect of heat stress on polyamine metabolism in Pro-over-producing tobacco plants. Plant Sci 182:49–58

    Article  PubMed  CAS  Google Scholar 

  • Dar TA, Moin Uddin, Khan MMA, Hakeem KR, Jaleel H (2015) Jasmonates counter plant stress: a review. Environ Exp Bot 115:49–57

    Article  CAS  Google Scholar 

  • Dat JF, Lopez-Delgado H, Foyer CH, Scott IM (1998) Parallel changes in H2O2 and catalase during thermotolerance induced by salicylic acid or heat acclimation in mustard seedlings. Plant Physiol 116:1351–1357

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • de Wit M, Lorrain S, Fankhausera C (2014) Auxin-mediated plant architectural changes in response to shade and high temperature. Physiol Plant 151:13–24

    Article  PubMed  CAS  Google Scholar 

  • Delker C, Stenzel I, Hause B, Miersch O, Feussner I, Wasternack C (2006) Jasmonate biosynthesis in Arabidopsis thaliana - enzymes, products, regulation. Plant Biol 8:297–306

    Article  CAS  PubMed  Google Scholar 

  • Demosthenis C, Reddy KN (2000) Factors affecting Campsis radicans seed germination and seedling emergence. Weed Sci 48:212–216

    Article  Google Scholar 

  • Ding W, Song L, Wang V, Bi Y (2010) Effect of abscisic acid on heat stress tolerance in the calli from two ecotypes of Phragmites communis. Biol Plant 54:607–613

    Article  CAS  Google Scholar 

  • Djanaguiraman M, Sheeba JA, Devi DD, Bangarusamy U (2009) Cotton leaf senescence can be delayed by nitrophenolate spray through enhanced antioxidant defense system. J Agron Crop Sci 195:213–224

    Article  CAS  Google Scholar 

  • Djanaguiraman M, Prasad PVV, Seppanen M (2010) Selenium protects sorghum leaves from oxidative damage under high temperature stress by enhancing antioxidant defense system. Plant Physiol Biochem 48:999–1007

    Article  CAS  PubMed  Google Scholar 

  • Djanaguiraman M, Prasad PVV, Al-Khatib K (2011) Ethylene perception inhibitor 1-MCP decreases oxidative damage of leaves through enhanced antioxidant defense mechanisms in soybean plants grown under high temperature stress. Environ Exp Bot 71:215–223

    Article  CAS  Google Scholar 

  • Dong G, Liu X, Chen Z, Pan W, Li H, Liu G (2007) The dynamics of tocopherol and the effect of high temperature in developing sunflower (Helianthus annuus L.) embryo. Food Chem 102:138–145

    Article  CAS  Google Scholar 

  • Du H, Liu H, Xiong L (2013) Endogenous auxin and jasmonic acid levels are differentially modulated by abiotic stresses in rice. Front Plant Sci. doi:10.3389/fpls.2013.00397

    PubMed Central  PubMed  Google Scholar 

  • Edreira JIR, Otegui ME (2012) Heat stress in temperate and tropical maize hybrids: differences in crop growth, biomass partitioning and reserves use. Field Crops Res 130:87–98

    Article  Google Scholar 

  • Egli DB, Tekrony DM, Heitholt JJ, Rupe J (2005) Air temperature during seed filling and soybean seed germination and vigor. Crop Sci 45:1329–1335

    Article  Google Scholar 

  • Escaler M, Aranda MA, Roberts IM, Thomas CL, Maule AJ (2000) A comparison between virus replication and abiotic stress (heat) as modifiers of host gene expression in pea. Mol Plant Pathol 1:159–167

    Article  CAS  PubMed  Google Scholar 

  • Fariduddin Q, Khanam S, Hasan SA, Ali B, Hayat S, Ahmad A (2009) Effect of 28-homobrassinolide on drought stress induced changes in photosynthesis and antioxidant system of Brassica juncea L. Acta Physiol Plant 31:889–897

    Article  CAS  Google Scholar 

  • Fariduddin Q, Yusuf M, Chalkoo S, Hayat S, Ahmad A (2011) 28-homobrassinolide improves growth and photosynthesis in Cucumis sativus L. through an enhanced antioxidant system in the presence of chilling stress. Photosynthetica 49:55–64

    Article  CAS  Google Scholar 

  • Foyer CH, Noctor G (2000) Oxygen processing in photosynthesis: regulation and signaling. New Phytol 146:359–88

    Article  CAS  Google Scholar 

  • Gao Y, Guo YK, Lin SH, Fang YY, Bai JG (2010) Hydrogen peroxide pretreatment alters the activity of antioxidant enzymes and protects chloroplast ultrastructure in heat-stressed cucumber leaves. Sci Hortic 126:20–26

    Article  CAS  Google Scholar 

  • Gill SS, Tuteja N (2010) Reactive oxygen species and antioxidant machinery in abiotic stress tolerance in crop plants. Plant Physiol Biochem 48:909–930

    Article  CAS  PubMed  Google Scholar 

  • Gokler I, Ozturk M (1989) An investigation on the liverworts of Black Sea region. Turk J Bot 13(2):242–248

    Google Scholar 

  • Gokler I, Ozturk M (1991) Liverworts of Turkey and their position in South-West Asia. Candollea 46(2):359–366

    Google Scholar 

  • Gomes MMA (2011) Physiological effects related to brassinosteroid application in plants. In: Hayat S, Ahmad A (eds) Brassinosteroids: a class of plant hormones. Springer, Dordrecht, pp 193–242

    Chapter  Google Scholar 

  • González-Olmedo JL, Córdova A, Aragón CE, Pina D, Rivas M, Rodríguez R (2005) Effect of an analogue of brassinosteroid on FHIA-18 plantlets exposed to thermal stress. InfoMusa 14:18–20

    Google Scholar 

  • Gordge MP (1998) How cytotoxic is nitric oxide? Exp Nephrol 6:12–16

    Article  CAS  PubMed  Google Scholar 

  • Gorham J (1995) Betaines in higher plants-biosynthesis and role in stress metabolism. In: Wallsgrove RM (ed) Amino acids and their derivatives in higher plants. Cambridge University Press, Cambridge, pp 171–203

    Google Scholar 

  • Goyal M, Asthir B (2010) Polyamine catabolism influences antioxidative defense mechanism in shoots and roots of five wheat genotypes under high temperature stress. Plant Growth Regul 60:13–25

    Article  CAS  Google Scholar 

  • Greer DH, Weedon MM (2012) Modelling photosynthetic responses to temperature of grapevine (Vitis vinifera cv. Semillon) leaves on vines grown in a hot climate. Plant Cell Environ 35:1050–1064

    Article  PubMed  Google Scholar 

  • Hakeem KR, Ahmad A, Iqbal M, Gucel S, Ozturk M (2011a) Nitrogen efficient rice genotype can reduce nitrate pollution. Environ Sci Pollut Res 18:1184–1193

    Article  CAS  Google Scholar 

  • Hakeem KR, Chandna R, Ahmad A, Iqbal M (2011b) Physiological and molecular analysis of applied nitrogen in rice (Oryza sativa L.) genotypes. Rice Sci 19(1):213–222

    Google Scholar 

  • Hakeem KR, Chandna R, Ahmad P, Ozturk M, Iqbal M (2012) Relevance of proteomic investigations in plant stress physiology. OMICS 16(11):621–635

    Article  CAS  PubMed  Google Scholar 

  • Hakeem KR, Parvaiz A, Ozturk M (eds) (2013) Crop improvement-new approaches and modern techniques, vol XXVII. Springer Science+Business Media, New York, 493 p

    Google Scholar 

  • Halliwell B (2006) Oxidative stress and neurodegeneration: where are we now? J Neurochem 97:1634–1658

    Article  CAS  PubMed  Google Scholar 

  • Hancock JT, Neill SJ, Wilson ID (2011) Nitric oxide and ABA in the control of plant function. Plant Sci 181:555–559

    Article  CAS  PubMed  Google Scholar 

  • Hao GP, Zhang JH (2010) The role of nitric oxide as a bioactive signaling molecule in plants under abiotic stress. In: Hayat S, Mori M, Pichtel J, Ahmad A (eds) Nitric oxide in plant physiology. Wiley-VCH, Weinheim, pp 115–138

    Google Scholar 

  • Hare PD, Cress WA (1997) Metabolic implications of stress-induced Pro accumulation in plants. Plant Growth Regul 21:79–102

    Article  CAS  Google Scholar 

  • Hasan MA, Ahmed JU, Bahadur MM, Haque MM, Sikder S (2007) Effect of late planting heat stress on membrane thermostability, Pro content and heat susceptibility index of different wheat cultivars. J Nat Sci Found Sri Lanka 35:109–117

    Google Scholar 

  • Hasanuzzaman M, Fujita M (2011) Selenium pretreatment upregulates the antioxidant defense and methylglyoxal detoxification system and confers enhanced tolerance to drought stress in rapeseed seedlings. Biol Trace Elem Res 143:1758–1776

    Article  CAS  PubMed  Google Scholar 

  • Hasanuzzaman M, Fujita M (2013) Exogenous sodium nitroprusside alleviates arsenic-induced oxidative stress in wheat (Triticum aestivum L.) seedlings by enhancing antioxidant defense and glyoxalase system. Ecotoxicology 22:584–596

    Article  CAS  PubMed  Google Scholar 

  • Hasanuzzaman M, Hossain MA, Fujita M (2011) Selenium-induced up-regulation of the antioxidant defense and methylglyoxal detoxification system reduces salinity-induced damage in rapeseed seedlings. Biol Trace Elem Res 143:1704–1721

    Article  CAS  PubMed  Google Scholar 

  • Hasanuzzaman M, Nahar K, Alam MM, Fujita M (2012) Exogenous nitric oxide alleviates high temperature induced oxidative stress in wheat (Triticum aestivum L.) seedlings by modulating the antioxidant defense and glyoxalase system. Aust J Crop Sci 6:1314–1323

    CAS  Google Scholar 

  • Hasanuzzaman M, Nahar K, Alam MM, Roychowdhury R, Fujita M (2013) Physiological, biochemical, and molecular mechanisms of heat stress tolerance in plants. Int J Mol Sci 14: 9643–9684

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Hasanuzzaman M, Nahar K, Alam MM, Fujita M (2014) Modulation of antioxidant machinery and the methylglyoxal detoxification system in selenium-supplemented Brassica napus seedlings confers tolerance to high temperature stress. Biol Trace Elem Res 61:297–307

    Article  CAS  Google Scholar 

  • Hayat Q, Hayat S, Irfan M, Ahmad A (2010a) Effect of exogenous salicylic acid under changing environment: a review. Environ Exp Bot 68:14–25

    Article  CAS  Google Scholar 

  • Hayat S, Hasan SA, Yusuf M, Hayat Q, Ahmad A (2010b) Effect of 28-homobrassinolide on photosynthesis, fluorescence and antioxidant system in the presence or absence of salinity and temperature in Vigna radiata. Environ Exp Bot 69:105–112

    Article  CAS  Google Scholar 

  • He YL, Liu YL, Cao WX, Huai MF, Xu BG, Huang BG (2005) Effects of salicylic acid on heat tolerance associated with antioxidant metabolism in Kentucky bluegrass. Crop Sci 45:988–995

    Article  CAS  Google Scholar 

  • He J-M, Zhang Z, Wang R-B, Chen Y-P (2011) UV-B-induced stomatal closure occurs via ethylene-dependent NO generation in Vicia faba. Funct Plant Biol 38:293–302

    Article  CAS  Google Scholar 

  • Hedhly A (2011) Sensitivity of flowering plant gametophytes to temperature fluctuations. Environ Exp Bot 74:9–16

    Article  Google Scholar 

  • Hedhly A, Hormaza JI, Herrero M (2009) Global warming and sexual plant reproduction. Trends Plant Sci 14:30–36

    Article  CAS  PubMed  Google Scholar 

  • Hemantaranjan A, Bhanu AN, Singh MN, Yadav DK, Patel PK, Singh R, Katiyar D (2014) Heat stress responses and thermotolerance. Adv Plants Agric Res 1:1–12

    Google Scholar 

  • Howarth CJ (2005) Genetic improvements of tolerance to high temperature. In: Ashraf M, Harris PJC (eds) Abiotic stresses: plant resistance through breeding and molecular approaches. Howarth Press, New York, pp 277–300

    Google Scholar 

  • Hussain SS, Ali M, Ahmad M, Siddique KHM (2011) Polyamines: natural and engineered abiotic and biotic stress tolerance in plants. Biotechnol Adv 29:300–311

    Article  CAS  PubMed  Google Scholar 

  • IPCC (2007) Climate Change (2007). The physical science basis. Summary for policymakers. Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change. IPCC, Geneva

    Google Scholar 

  • Ismail AM, Hall AE (1999) Reproductive-stage, heat tolerance, leaf membrane thermostability and plant morphology in cowpea. Crop Sci 39:1762–1768

    Article  Google Scholar 

  • Jain M, Prasad PVV, Boote KJ, Hartwell AL, Chourey PS (2007) Effects of season-long high temperature growth conditions on sugar-to-starch metabolism in developing microspores of grain sorghum (Sorghum bicolor L. Moench). Planta 227:67–79

    Article  CAS  PubMed  Google Scholar 

  • Jimenez A, Hernandez JA, Pastori G, del Rio LA, Sevilla F (1998) Role of the ascorbate-glutathione cycle of mitochondria and peroxisomes in the senescence of pea leaves. Plant Physiol 118: 1327–1335

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Johkan M, Oda M, Maruo T, Shinohara Y (2011) Crop production and global warming. In: Casalegno S (ed) Global warming impacts – case studies on the economy, human health, and on urban and natural environments. Intech, Rijeka, pp 139–152

    Google Scholar 

  • Kadioglu A, Saruhan N, Sağlam A, Terzi R, Acet T (2011) Exogenous salicylic acid alleviates effects of long term drought stress and delays leaf rolling by inducing antioxidant system. Plant Growth Regul 64:27–37

    Article  CAS  Google Scholar 

  • Kagale S, Divi UK, Krochko JE, Keller WA, Krishna P (2007) Brassinosteroid confers tolerance in Arabidopsis thaliana and Brassica napus to a range of abiotic stresses. Planta 225:353–364

    Article  CAS  PubMed  Google Scholar 

  • Kalra N, Chakraborty D, Sharma A, Rai HK, Jolly M, Chander S, Kumar PR, Bhadraray S, Barman D, Mittal RB, Lal M, Sehgal M (2008) Effect of increasing temperature on yield of some winter crops in northwest India. Curr Sci 94:82–88

    Google Scholar 

  • Kanayama Y, Sato K, Ikeda H, Tamura T, Nishiyama M, Kanahama K (2013) Seasonal changes in abiotic stress tolerance and concentrations of tocopherol, sugar, and ascorbic acid in sea buckthorn leaves and stems. Sci Hortic 164:232–237

    Article  CAS  Google Scholar 

  • Kappen L (1981) Ecological significance of resistance to high temperature. In: Lange et al (eds) Encyclopedia of plant physiology, physiological plant ecology I B, New Series, Vol 12A. Springer, New York, pp 439–474

    Chapter  Google Scholar 

  • Karcz W, Burdach Z, Lekacz H, Polak M (2008) Fusicoccin counteracts inhibitory effects of high temperature on auxin induced growth and proton extrusion in maize coleoptile segments. Plant Signal Behav 3:821–822

    Article  PubMed Central  PubMed  Google Scholar 

  • Karuppanapandian T, Wang HW, Prabakaran N, Jeyalakshmi K, Kwon M, Manoharan K, Kim W (2011a) 2,4-dichlorophenoxyacetic acid-induced leaf senescence in mung bean (Vigna radiata L. Wilczek) and senescence inhibition by co-treatment with silver nanoparticles. Plant Physiol Biochem 49:168–177

    Article  CAS  PubMed  Google Scholar 

  • Karuppanapandian T, Moon JC, Kim C, Manoharan K, Kim W (2011b) Reactive oxygen species in plants: their generation, signal transduction, and scavenging mechanisms. Aust J Crop Sci 5: 709–725

    CAS  Google Scholar 

  • Kaur P, Ghai N, Sangha MK (2009) Induction of thermotolerance through heat acclimation and salicylic acid in Brassica species. Afr J Biotechnol 8:619–625

    CAS  Google Scholar 

  • Kaushal N, Gupta K, Bhandhari K, Kumar S, Thakur P, Nayyar H (2011) Pro induces heat tolerance in chickpea (Cicer arietinum L.) plants by protecting vital enzymes of carbon and antioxidative metabolism. Physiol Mol Biol Plants 17:203–213

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Kepova KD, Holzer R, Stoilova LS, Feller U (2005) Heat stress effects on ribulose-1,5-bisphosphate carboxylase/oxygenase, rubisco binding protein and rubisco activase in wheat leaves. Biol Plant 49:521–525

    Article  Google Scholar 

  • Khalil SI, El-Bassiouny HMS, Hassanein RA, Mostafa HA (2009) Antioxidant defense system in heat shocked wheat plants previously treated with arginine or putrescine. Aust J Basic Appl Sci 3:1517–1526

    CAS  Google Scholar 

  • Khan MS, Yu X, Kikuchi A, Asahina M, Watanabe KN (2009) Genetic engineering of glycine betaine biosynthesis to enhance abiotic stress tolerance in plants. Plant Biotechnol 26:125–134

    Article  CAS  Google Scholar 

  • Khan MIR, Syeed S, Nazar R, Anjum NA (2012) An insight into the role of salicylic acid and jasmonic acid in salt stress tolerance. In: Khan NA, Nazar R, Iqbal N, Anjum NA (eds) Phytohormones and abiotic stress tolerance in plants. Springer, New York, pp 277–300

    Chapter  Google Scholar 

  • Khurana A, Khurana JP, Babbar SB (2011) Nitric oxide induces flowering in the duckweed Lemna aequinoctialis Welw. (Syn. L. paucicostata Hegelm.) under non-inductive conditions. J Plant Growth Regul. doi:10.1007/s00344-011-9199-7

    Google Scholar 

  • Kocsy G, Szalai G, Galiba G (2002) Induction of glutathione synthesis and glutathione reductase activity by abiotic stresses in maize and wheat. Sci World J 2:1699–1705

    Article  Google Scholar 

  • Kolb PF, Robberecht R (1996) High temperature and drought stress effects on survival of Pinus ponderosa seedlings. Tree Physiol 16:665–672

    Article  PubMed  Google Scholar 

  • Königshofer H, Lechner S (2002) Are polyamines involved in the synthesis of heatshock proteins in cell suspension cultures of tobacco and alfalfa in response to high-temperature stress? Plant Physiol Biochem 40:51–59

    Article  Google Scholar 

  • Konigshofer H, Tromballa HW, Loppert HG (2008) Early events in signalling high-temperature stress in tobacco BY2 cells involve alterations in membrane fluidity and enhanced hydrogen peroxide production. Plant Cell Environ 31:1771–1780

    Article  CAS  PubMed  Google Scholar 

  • Korhonen R, Lahti A, Kankaanranta H, Moilanen E (2005) Nitric oxide production and signaling in inflammation. Curr Drug Targets Inflamm Allergy 4:471–479

    Article  CAS  PubMed  Google Scholar 

  • Kou CG, Chen HM, Ma LH (1986) Effect of high temperature on Pro content in tomato floral buds and leaves. J Am Soc Hortic Sci 11:734–750

    Google Scholar 

  • Kulaeva ON, Burkhanova EA, Fedina AB, Khokhlova VA, Bokebayeva GA, Vorbrodt HM, Adam G (1991) Effect of brassinosteroids on protein synthesis and plant-cell ultrastructure under stress conditions. In: Cutler HG, Yokota T, Adam G (eds) Brassinosteroids: chemistry, bioactivity and applications. American Chemical Society, Washington, DC, pp 141–157

    Chapter  Google Scholar 

  • Kumar S, Kaur R, Kaur N, Bhandhari K, Kaushal N, Gupta K, Bains TS, Nayyar H (2011) Heat-stress induced inhibition in growth and chlorosis in mungbean (Phaseolus aureus Roxb.) is partly mitigated by ascorbic acid application and is related to reduction in oxidative stress. Acta Physiol Plant 33:2091–2101

    Article  CAS  Google Scholar 

  • Kumar S, Singh R, Nayyar H (2013) α-Tocopherol application modulates the response of wheat (Triticum aestivum L.) seedlings to elevated temperatures by mitigation of stress injury and enhancement of antioxidants. J Plant Growth Regul 32:307–314

    Article  CAS  Google Scholar 

  • Kurepin LV, Qaderi MM, Back TG, Reid DM, Pharis RP (2008) A rapid effect of applied brassinolide on abscisic acid concentrations in Brassica napus leaf tissue subjected to short-term heat stress. Plant Growth Regul 55:165–167

    Article  CAS  Google Scholar 

  • Kurganova LN, Veselov AP, Sinitsina YV, Elikova EA, Kulaeva ON (1999) Lipid peroxidation products as possible mediators of heat stress response in plants. Russ J Plant Physiol 46:181–185

    CAS  Google Scholar 

  • Kusano T, Yamaguchi K, Berberich T, Takahashi Y (2007) Advances in polyamine research in 2007. J Plant Res 120:345–50

    Article  CAS  PubMed  Google Scholar 

  • Kusano T, Berberich T, Tateda C, Takahashi Y (2008) Polyamines: essential factors for growth and survival. Planta 228:367–381

    Article  CAS  PubMed  Google Scholar 

  • Larkindale J, Huang B (2004) Thermotolerance and antioxidant systems in Agrostis stolonifera: involvement of salicylic acid, abscisic acid, calcium, hydrogen peroxide, and ethylene. J Plant Physiol 161:405–413

    Article  CAS  PubMed  Google Scholar 

  • Lee U, Wie C, Fernández BO, Feelisch M, Vierling E (2008) Modulation of nitrosative stress by S-nitrosoglutathione reductase is critical for thermo-tolerance and plant growth in Arabidopsis. Plant Cell 20:786–802

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Li B, Liu HT, Sun DY, Zhou RG (2004a) Ca2+ and calmodulin modulate DNA-binding activity of maize heat shock transcription factor in vitro. Plant Cell Physiol 45:627–634

    Article  CAS  PubMed  Google Scholar 

  • Li WB, Shi XH, Wang H, Zhang FS (2004b) Effects of silicon on rice leaves resistance to ultraviolet-B. Acta Bot Sin 46:691–697

    CAS  Google Scholar 

  • Liu X, Huang B (2008) Photosynthetic acclimation to high temperatures associated with heat tolerance in creeping bentgrass. J Plant Physiol 165:1947–1953

    Article  CAS  PubMed  Google Scholar 

  • Liu JH, Moriguchi T (2007) Changes in free polyamine titers and expression of polyamine biosynthetic genes during growth of peach in vitro callus. Plant Cell Rep 26:125–31

    Article  CAS  PubMed  Google Scholar 

  • Liu HT, Un DY, Zhou RG (2005) Ca2+ and AtCaM3 are involved in the expression of heat shock protein gene in Arabidopsis. Plant Cell Environ 28:1276–1284

    Article  CAS  Google Scholar 

  • Liu HT, Liu YY, Pan QH, YangHR ZJC, Huang YD (2006) Novel interrelationship between salicylic acid, abscisic acid, and PIP2-specific phospholipase C in heat acclimation-induced thermotolerance in pea leaves. J Exp Bot 57:3337–3347

    Article  CAS  PubMed  Google Scholar 

  • Lobell DB, Asner GP (2003) Climate and management contributions to recent trends in U.S. agricultural yields. Science 299:1032

    Article  CAS  PubMed  Google Scholar 

  • Lopez-Delgado H, Dat JF, Foyer CH, Scott IM (1998) Induction of thermotolerance in potato microplants by acetylsalicylic acid and H2O2. J Exp Bot 49:713–720

    Article  CAS  Google Scholar 

  • Lu J, Xing XJ, Zhu LQ, WangY YH, Yuan JJ (2011) Effects of exogenous glycine betaine and CaCl2 on physiological responses of tobacco plants under stresses of heat and drought. Plant Nutr Fertil Sci 17:1437–1443

    CAS  Google Scholar 

  • Luo Y, Li WM, Wang W (2008) Trehalose: protector of antioxidant enzymes or reactive oxygen species scavenger under heat stress? Environ Exp Bot 63:378–384

    Article  CAS  Google Scholar 

  • Luo Y, Gao YM, Wang W, Zou CJ (2014) Application of trehalose ameliorates heat stress and promotes recovery of winter wheat seedlings. Biol Plant 58:395–398

    Article  CAS  Google Scholar 

  • Lv WT, Lin B, Zhang M, Hua XJ (2011) Pro accumulation is inhibitory to Arabidopsis seedlings during heat stress. Plant Physiol 156:1921–1933

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Ma YH, Ma FW, Zhang JK, Li MJ, Wang YH, Liang D (2008) Effects of high temperature on activities and gene expression of enzymes involved in ascorbate–glutathione cycle in apple leaves. Plant Sci 175:761–766

    Article  CAS  Google Scholar 

  • Maestri E, Klueva N, Perrotta C, Gulli M, Nguyen HT, Marmiroli N (2002) Molecular genetics of heat tolerance and heat shock proteins in cereals. Plant Mol Biol 48:667–681

    Article  CAS  PubMed  Google Scholar 

  • Maheswari M, Yadav SK, Shanker AK, Kumar MA, Venkateswarlu B (2012) Overview of plant stresses: mechanisms, adaptations and research pursuit. In: Venkateswarlu B, Shanker AK, Shanker C, Maheswari M (eds) Crop stress and its management: perspectives and strategies. Springer, Dordrecht, pp 1–18

    Chapter  Google Scholar 

  • Mahmood S, Wahid A, Javed F, Basra SMA (2010) Heat stress effects on forage quality characteristics of maize (Zea mays) cultivars. Int J Agric Biol 12:701–706

    CAS  Google Scholar 

  • Mansoor S, Naqvi FN (2012) Effect of gibberrelic acid on α-amylase activity in heat stressed mung bean (Vigna radiate L.) seedlings. Afr J Biotechnol 11:11414–11419

    CAS  Google Scholar 

  • Mazid M, Khan TA, Mohammad F (2011) Role of nitric oxide in regulation of H2O2 mediating tolerance of plants to abiotic stress: a synergistic signalling approach. J Stress Physiol Biochem 7:34–74

    Google Scholar 

  • Mazorra LM, Nunez M, Echerarria E, Coll F, Sánchez-Blanco MJ (2002) Influence of brassinosteriods and antioxidant enzymes activity in tomato under different temperatures. Plant Biol 45:593–596

    Article  CAS  Google Scholar 

  • McSteen P, Malcomber S, Skirpan A, Lunde C, Wu X, Kellogg E, Hake S (2007) Barreninflorescence2 encodes a co-ortholog of the PINOID serine/threonine kinase and is required for organogenesis during inflorescence and vegetative development in maize. Plant Physiol 144:1000–1011

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Mehta RA, Cassol T, Li N, Ali N, Handa AK, Mattoo AK (2002) Engineered polyamine accumulation in tomato enhances phytonutrient content, juice quality and vine life. Nat Biotechnol 20:613–618

    Article  CAS  PubMed  Google Scholar 

  • Miranda JA, Avonce N, Suárez R, Thevelein JM, Dijck PV, Iturriaga G (2007) A bifunctional TPS–TPP enzyme from yeast confers tolerance to multiple and extreme abiotic-stress conditions in transgenic Arabidopsis. Planta 226:1411–1421

    Article  CAS  PubMed  Google Scholar 

  • Mitra R, Bhatia CR (2008) Bioenergetic cost of heat tolerance in wheat crop. Curr Sci 94:1049–1053

    CAS  Google Scholar 

  • Mittler R (2002) Oxidative stress, antioxidants and stress tolerance. Trends Plant Sci 7:405–410

    Article  CAS  PubMed  Google Scholar 

  • Mittler R, Finka A, Goloubinoff P (2012) How do plants feel the heat? Trends Biochem Sci 37: 118–125

    Article  CAS  PubMed  Google Scholar 

  • Morales D, Rodriguez P, Dell’amico J, Nicolas E, Torrecillas A, Sanchez-Blanco MJ (2003) High temperature pre-conditioning and thermal shock imposition affects water relations, gas exchange and root hydraulic conductivity in tomato. Biol Plant 47:203–208

    Article  Google Scholar 

  • Mostafa HAM, Hassanein RA, Khalil SI, El-Khawas SA, El-Bassiouny HMS, El-Monem AAA (2010) Effect of arginine or putrescine on growth, yield and yield components of late sowing wheat. J Appl Sci Res 6:177–183

    Google Scholar 

  • Mullineaux PM, Rausch T (2005) Glutathione, photosynthesis and the redox regulation of stress-responsive gene expression. Photosynth Res 86:459–474

    Article  CAS  PubMed  Google Scholar 

  • Munné-Bosch S (2005) The role of α-tocopherol in plant stress tolerance. J Plant Physiol 162: 743–748

    Article  PubMed  CAS  Google Scholar 

  • Nagpal P, Ellis CM, Weber H, Ploense SE, Barkawi LS, Guilfoyle TJ, Hagen G, Alonso JM, Cohen JD, Farmer EE, Ecker JR, Reed JW (2005) Auxin response factors ARF6 and ARF8 promote jasmonic acid production and flower maturation. Development 132:4107–4118

    Article  CAS  PubMed  Google Scholar 

  • Nahar K, Ahamed KU, Fujita M (2010) Phenological variation and its relation with yield in several wheat (Triticum aestivum L.) cultivars under normal and late sowing mediated heat stress condition. Not Sci Biol 2:51–56

    Google Scholar 

  • Nahar K, Hasanuzzaman M, Alam MM, Fujita M (2015) Exogenous glutathione confers high temperature stress tolerance in mung bean (Vigna radiata L.) by modulating antioxidant defense and methylglyoxal detoxification system. Environ Exp Bot 112:44–54

    Article  CAS  Google Scholar 

  • Nascimento WM, Pereira RS (2007) Preventing thermo-inhibition in carrot by seed priming. Seed Sci Technol 35:503–506

    Article  Google Scholar 

  • Nascimento WM, Cantliffe DJ, Huber DJ (2005) Seed aging affects ethylene production and endo-β-mannanase activity during lettuce seed germination at high temperature. Seed Sci Technol 33:11–17

    Article  Google Scholar 

  • Nascimento WM, Vieira JV, Silva GO (2008) Carrot seed germination at high temperature: effect of genotype and association with ethylene production. Hortscience 43:1538–1543

    Google Scholar 

  • Nava GA, Dalmago GA, Bergamaschi H, Paniz R, dosSantos RP, Marodin GAB (2009) Effect of high temperatures in the pre-blooming and blooming periods on ovule formation, pollen grains and yield of ‘Granada’ peach. Sci Hortic 122:37–44

    Article  Google Scholar 

  • Neill SJ, Desikan R, Clarke A, Hurst RD, Hancock JT (2002) Hydrogen peroxide and nitric oxide as signalling molecules in plants. J Exp Bot 53:1237–1247

    Article  CAS  PubMed  Google Scholar 

  • Nemhauser JL, Feldman LJ, Zambryski PC (2000) Auxin and ETTIN in Arabidopsis gynoecium morphogenesis. Development 127:3877–88

    CAS  PubMed  Google Scholar 

  • Nieto-Sotelo J, Tuan-Hua DH (1986) Effect of heat shock on the metabolism of glutathione in maize roots. Plant Physiol 82:1031–1035

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Ogweno JO, Song XS, Shi K, Hu WH, Mao WH, Zhou YH, Yu JQ, Nogues S (2008) Brassinosteroids alleviate heat-induced inhibition of photosynthesis by increasing carboxylation efficiency and enhancing antioxidant systems in Lycopersicon esculentum. J Plant Growth Regul 27:49–57

    Article  CAS  Google Scholar 

  • Omae H, Kumar A, Shono M (2012) Adaptation to high temperature and water deficit in the common bean (Phaseolus vulgaris L.) during the reproductive period. J Bot. doi:10.1155/2012/803413

    Google Scholar 

  • Oshino T, Miura S, Kikuchi S, Hamada K, Yano K, Watanabe M (2011) Auxin depletion in barley plants under high-temperature conditions represses DNA proliferation in organelles and nuclei via transcriptional alterations. Plant Cell Environ 34:284–290

    Article  CAS  PubMed  Google Scholar 

  • Ouzounidou G, Vekiari S, Asfi M, Gork MG, Sakcali MS, Ozturk M (2012) Photosynthetic characteristics of carob tree (Ceratonia siliqua L.) and chemical composition of its fruit on diurnal and seasonal basis. Pak J Bot 44(5):1689–1695

    CAS  Google Scholar 

  • Ozturk M (1968) Observations on the seed dormancy of three Ranunculus species. Ege Univ Sci Fac Sci Rep 56:3–5

    Google Scholar 

  • Ozturk M (1969) Some autecological studies on Ranunculus muricatus. Ege Univ Sci Fac Sci Rep 5:3–14

    Google Scholar 

  • Ozturk M (1980) Population differentiation in Cichorium intybus-ecad formation. In: Proceedings of the TUBITAK, VII. Science Congress, Kusadası, Izmir, Turkey, pp 647–656

    Google Scholar 

  • Ozturk M, Gokler I (1988) Ecology of west Anatolian liverworts. Bryol Times 47:1–3

    Google Scholar 

  • Ozturk M, Secmen O (1999) Plant ecology, 5th edn. Ege University Press, Izmir, 350 p

    Google Scholar 

  • Ozturk M, Szaniawiski RK (1981) Root temperature stress and proline content in leaves and roots of two ecologically different plant species. Zeitschrift für Pflanzenphysiologie (The Plant Physiology) 9, 102, 375–377

    Google Scholar 

  • Ozturk MA, Vardar Y (1975) Studies on the seed germination of Myrtus communis. In: Proceedings of the MPP meeting, Izmir, Turkey, pp 56–59

    Google Scholar 

  • Ozturk M, Rehder H, Ziegler H (1981) Biomass production of C3 and C4 plant species in pure and mixed culture with different water supply. Oecologia 50:73–81

    Article  Google Scholar 

  • Ozturk M, Sato T, Takahashi N (1986) Proline accumulation in shoots and roots of some ecophysiologically different plants under root temperature stress. Environ Control Biol 24:79–85

    Article  CAS  Google Scholar 

  • Ozturk M, Guvensen A, Gucel S (2008) Ecology and economic potential of halophytes-a case study from Turkey. In: Kafi, Khan (eds) Crop and forage production using saline waters. NAM S & T Centre, Daya Publishing, Delhi, pp 255–264

    Google Scholar 

  • Ozturk M, Gucel S, Sakcali S, Dogan Y, Baslar S (2009) Effects of temperature and salinity on germination and seedling growth of Daucus carota cv. nantes and Capsicum annuum cv. sivri and flooding on Capsicum annuum cv. sivri. In: Ashraf M et al (eds) Salinity and water stress: improving crop efficiency, Vol 44 - Tasks for vegetation science. Springer, New York, pp 51–64

    Google Scholar 

  • Ozturk M, Hakeem KR, Faridah-Hanum I, Efe R (eds) (2015) Climate change ımpacts on high-altitude ecosystems. Springer Science+Business Media, New York, 736 p

    Google Scholar 

  • Papageorgiou GC, Murata N (1995) The unusually strong stabilizing effects of glycine betaine on the structure and function of the oxygen-evolving photosystem II complex. Photosynth Res 44: 243–252

    Article  CAS  PubMed  Google Scholar 

  • Park J, Ro H, Hwang K, Yiem MS (2001) Effect of water stress induced by polyethylene glycol and root zone temperature on growth and mineral contents of Fuji/M. 26 apple. J Korean Soc Hort Sci 42(4):435–438

    Google Scholar 

  • Piramila BHM, Prabha AL, Nandagopalan V, Stanley AL (2012) Effect of heat treatment on germination, seedling growth and some biochemical parameters of dry seeds of black gram. Int J Pharm Phytopharmacol Res 1:194–202

    CAS  Google Scholar 

  • Porter JR, Semenov MA (2005) Crop responses to climatic variation. Philos Trans R Soc Biol Sci 360:2021–2035

    Article  Google Scholar 

  • Potters G, Pasternak TP, Guisez Y, Jansen MAK (2008) Different stresses, similar morphogenic responses: integrating plethora of pathways. Plant Cell Environ 32:158–169

    Article  PubMed  Google Scholar 

  • Prasad PVV, Staggenborg SA, Ristic Z (2008) Impacts of drought and/or heat stress on physiological, developmental, growth, and yield processes of crop plants. In: Ahuja LH, Saseendran SA (eds) Response of crops to limited water: understanding and modeling water stress effects on plant growth processes. Advances in agricultural systems modeling series 1. ASA-CSSA: Madison, Wisconsin, pp 301–355

    Google Scholar 

  • Procházková D, Wilhelmová N (2011) Nitric oxide, reactive nitrogen species and associated enzymes during plant senescence. Nitric Oxide 24:61–65

    Article  PubMed  CAS  Google Scholar 

  • Qiao W, Fan LM (2008) Nitric oxide signalling in plant responses to abiotic stresses. J Integr Plant Biol 50:1238–1246

    Article  CAS  PubMed  Google Scholar 

  • Quan LJ, Zhang B, Shi WW, Li HY (2008) Hydrogen peroxide in plants: a versatile molecule of the reactive oxygen species network. J Integr Plant Biol 50:2–18

    Article  CAS  PubMed  Google Scholar 

  • Quinn PJ (1988) Effects of temperature on cell membranes. Symp Soc Exp Biol 42:237–58

    CAS  PubMed  Google Scholar 

  • Rahman MA, Chikushi J, Yoshida S, Karim AJMS (2009) Growth and yield components of wheat genotypes exposed to high temperature stress under control environment. Bangladesh J Agric Res 34:361–372

    Google Scholar 

  • Rasheed R (2009) Salinity and extreme temperature effects on sprouting buds of sugarcane (Saccharum officinarum L.): some histological and biochemical studies. PhD thesis, Department of Botany, University of Agriculture, Faisalabad

    Google Scholar 

  • Ren C, Bilyeu KD, Beuselinck P (2009) Composition, vigor, and proteome of mature soybean seeds developed under high temperature. Crop Sci 49:1010–1022

    Article  CAS  Google Scholar 

  • Rivero RM, Ruiz JM, Romero L (2004) Oxidative metabolism in tomato plants subjected to heat stress. J Hort Sci Biotechnol 79:560–564

    CAS  Google Scholar 

  • Ronde J, Mescht A, Steyn HSF (2001) Pro accumulation in response to drought and heat stress in cotton. Afr Crop Sci J 8:85–91

    Google Scholar 

  • Saha S, Hossain M, Rahman M, Kuo C, Abdullah S (2010) Effect of high temperature stress on the performance of twelve sweet pepper genotypes. Bangladesh J Agric Res 35:525–534

    Google Scholar 

  • Saidi Y, Finka A, Muriset M, Bromberg Z, Weiss YG, Maathuis FJM, Goloubinoff P (2009) The heat shock response in moss plants is regulated by specific calcium-permeable channels in the plasma membrane. Plant Cell 21:2829–2843

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Sakata T, Higashitani A (2008) Male sterility accompanied with abnormal anther development in plants–genes and environmental stresses with special reference to high temperature injury. Int J Plant Dev Biol 2:42–51

    Google Scholar 

  • Sakata T, Oshino T, Miura S, Tomabechi M, Tsunaga Y, Higashitani N, Miyazawa Y, Takahashi H, Watanabe M, Higashitani A (2010) Auxins reverse plant male sterility caused by high temperatures. Proc Natl Acad Sci USA 107:8569–8574

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Sakcali MS, Ozturk M (2003) Eco-physiological behaviour of some Mediterranean plants as suitable candidates for reclamation of degraded areas. J Arid Environ 57:141–153

    Article  Google Scholar 

  • Savicka M, Škute N (2010) Effects of high temperature on malondialdehyde content, superoxide production and growth changes in wheat seedlings (Triticum aestivum L.). Ekologija 56:26–33

    Article  CAS  Google Scholar 

  • Schluepmann H, van Dijken A, Aghdasi M, Wobbes B, Paul M, Smeekens S (2004) Trehalose mediated growth inhibition of Arabidopsis seedlings is due to trehalose-6-phosphate accumulation. Plant Physiol 135:879–890

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Shah N, Paulsen G (2003) Interaction of drought and high temperature on photosynthesis and grain-filling of wheat. Plant Soil 257:219–226

    Article  CAS  Google Scholar 

  • Shengli M, Yongchen D, Xiaoxuan W, Dewei Z, Ianchang GJ, Shanshu D (2005) Changes of endogenous abscisic acid and the effect of exogenous ABA on pollen germination under heat stress tomato. Acta Hortic Sin 32:234–238

    Google Scholar 

  • Silva EN, Ferreira-Silva SL, de VasconcelosFontenelea A, Ribeirob RV, Viégasc RA, Silveira JAG (2010) Photosynthetic changes and protective mechanisms against oxidative damage subjected to isolated and combined drought and heat stresses in Jatropha curcas plants. J Plant Physiol 167:1157–1164

    Article  CAS  PubMed  Google Scholar 

  • Singer MA, Lindquist S (1998) Thermotolerance in Saccharomyces cerevisiae: the Yin and Yang of trehalose. Trends Biotechnol 16:460–468

    Article  CAS  PubMed  Google Scholar 

  • Singh I, Shono M (2005) Physiological and molecular effects of 24-epibrassinolide, a brassinosteroid on thermotolerance of tomato. Plant Growth Regul 47:111–119

    Article  CAS  Google Scholar 

  • Šírová J, Sedlářová M, Piterková J, Luhová L, Petřivalský M (2011) The role of nitric oxide in the germination of plant seeds and pollen. Plant Sci 181:560–572

    Article  PubMed  CAS  Google Scholar 

  • Smirnoff N (2000) Ascorbic acid: metabolism and functions of a multifaceted molecule. Curr Opin Plant Biol 3:229–235

    Article  CAS  PubMed  Google Scholar 

  • Smirnoff N (2005) Ascorbate, tocopherol and carotenoids: metabolism, pathway engineering and functions. In: Smirnoff N (ed) Antioxidants and reactive oxygen species in plants. Blackwell, Oxford, UK, pp 53–86

    Chapter  Google Scholar 

  • Soliman WS, Fujimori M, Tase K, Sugiyama SI (2011) Oxidative stress and physiological damage under prolonged heat stress in C3 grass Lolium perenne. Grassland Sci 57:101–106

    Article  CAS  Google Scholar 

  • Son MS, Song JY, Lim MY, Sivanesan I, Jeong BR (2011) Effect of silicon on tolerance to high temperatures and drought stress in Euphorbia pulcherrima willd. “Ichiban”. In: Proceedings of the 5th international conference on silicon in agriculture, Beijing, China, p 188

    Google Scholar 

  • Song L, Ding W, Zhao M, Sun B, Zhang L (2006) Nitric oxide protects against oxidative stress under heat stress in the calluses from two ecotypes of reed. Plant Sci 171:449–458

    Article  CAS  PubMed  Google Scholar 

  • Sorefan K, Girin T, Liljegren SJ (2009) A regulated auxin minimum is required for seed dispersal in Arabidopsis. Nature 459:583–586

    Article  CAS  PubMed  Google Scholar 

  • Srivastava S, Pathak AD, Gupta PS, Shrivastava AK, Srivastava AK (2012) Hydrogen peroxide-scavenging enzymes impart tolerance to high temperature induced oxidative stress in sugarcane. J Environ Biol 33:657–661

    CAS  PubMed  Google Scholar 

  • Steponkus PL (1981) Responses to extreme temperatures-cellular and sub-cellular bases. In: Lange A et al (eds) Encyclopedia of plant physiology, physiological plant ecology I B, New Series, Vol 12A. Springer, New York, pp 371–402

    Chapter  Google Scholar 

  • Stolker R (2010) Combating abiotic stress using trehalose-cross-protection in tissue culture of Arabidopsis thaliana. M.Sc. Thesis report. Plant Sciences, Specialization: Breeding and Genetic Resources, Wageningen University & Research Centre

    Google Scholar 

  • Sumesh K, Sharma-Natu P, Ghildiyal M (2008) Starch synthase activity and heat shock protein in relation to thermal tolerance of developing wheat grains. Biol Plant 52:749–753

    Article  CAS  Google Scholar 

  • Sun J, Qi L, Li Y, Chu J, Li C (2012) PIF4-mediated activation of YUCCA8 expression integrates temperature into the auxin pathway in regulating Arabidopsis hypocotyl growth. PLoS Genet 8:e1002594

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Syeed S, Anjum NA, Nazar R, Iqbal N, Masood A, Khan NA (2011) Salicylic acid-mediated changes in photosynthesis, nutrients content and antioxidant metabolism in two mustard (Brassica juncea L.) cultivars differing in salt tolerance. Acta Physiol Plant 33:877–8866

    Article  CAS  Google Scholar 

  • Szabados L, Savoure A (2010) Pro: a multifunctional amino acid. Trends Plant Sci 15:89–97

    Article  CAS  PubMed  Google Scholar 

  • Taiz L, Zeiger E (2006) Stress physiology. In: Taiz L, Zeiger E (eds) Plant physiology, 5th edn. Sinauer Associates, Sunderland, pp 671–681

    Google Scholar 

  • Takeda H, Cenpukelee U, Chauhan YS, Srinivasan A, Hossain MM, Rashad MH, Lin B, Tolwar HS, Senboku T, Varhima S, Yanagihara S, Shono M, Ancho S, Lin BQ, Yajima M, Hayashi T (1999) Studies in heat tolerance of Brassica vegetables and legumes at the International Collaboration Research Station from 1992 to 1996. In: Proceedings of workshop on heat tolerance of crops. Okinawa, Japan, 7–9 Oct 1997. JIRCAS Working Report 14:17–29

    Google Scholar 

  • Tan W, Meng QW, Brestic M, Olsovska K, Yang X (2011) Photosynthesis is improved by exogenous calcium in heat-stressed tobacco plants. J Plant Physiol 168:2063–2071

    Article  CAS  PubMed  Google Scholar 

  • Tang RS, Zheng JC, Jin ZQ, Zhang DD, Huang YH, Chen LG (2008) Possible correlation between high temperature-induced floret sterility and endogenous levels of IAA, Gas and ABA in rice (Oryza sativa L.). Plant Growth Regul 54:37–43

    Article  CAS  Google Scholar 

  • Thakur P, Kumar S, Malik JA, Berger JD, Nayyar H (2010) Cold stress effects on repro- ductive development in grain crops, an overview. Environ Exp Bot 67:429–443

    Article  CAS  Google Scholar 

  • Toh S, Imamura A, Watanabe A, Nakabayashi K, Okamoto M, Jikumaru Y, Hanada A, Aso Y, Ishiyama K, Tamura N, Iuchi S, Kobayashi M, Yamaguchi S, Kamiya Y, Nambara E, Kawakami N (2008) High temperature-induced abscisic acid biosynthesisand its role in the inhibition of gibberellin action in Arabidopsis seeds. Plant Physiol 146:1368–1385

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Tubiello FN, Soussana JF, Howden SM (2007) Crop and pasture response to climate change. Proc Natl Acad Sci USA 104:19686–19690

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Turkyilmaz Unal B, Guvensen A, Esiz Dereboylu A, Ozturk M (2013) Variations in the proline and total protein contents in Origanum sipyleum L. from different altitudes of Spil Mountain, Turkey. Pak J Bot 45(S1):571–576

    Google Scholar 

  • Uchida A, Jagendorf AT, Hibino T, Takabe T, Takabe T (2002) Effects of hydrogen peroxide and nitric oxide on both salt and heat stress tolerance in rice. Plant Sci 163:515–523

    Article  CAS  Google Scholar 

  • Vandelook F, Van Assche JA (2008) Temperature requirements for seed germination and seedling development determine timing of seedling emergence of three monocotyledonous temperate forest spring geophytes. Ann Bot 102:865–875

    Article  PubMed Central  PubMed  Google Scholar 

  • Vasseur F, Pantin F, Vile D (2011) Changes in light intensity reveal a major role for carbon balance in Arabidopsis responses to high temperature. Plant Cell Environ 34:1563–1576

    Article  CAS  PubMed  Google Scholar 

  • Verbruggen N, Hermans C (2008) Pro accumulation in plants: a review. Amino Acids 35:753–759

    Article  CAS  PubMed  Google Scholar 

  • Vertovec M, Sakcali S, Ozturk M, Salleo S, Giacomich P, Feoli E, Nardini A (2001) Diagnosing plant water status as a tool for quantifying water stress on a regional basis in Mediterranean drylands. Ann For Sci 58:113–125

    Article  Google Scholar 

  • Vivancos PD, Dong Y, Ziegler K, Markovic J, Pallardó FV, Pellny TK, Verrier PJ, Foyer CH (2010) Recruitment of glutathione into the nucleus during cell proliferation adjusts whole-cell redox homeostasis in Arabidopsis thaliana and lowers the oxidative defence shield. Plant J 64:825–838

    Article  CAS  PubMed  Google Scholar 

  • Wahid A (2007) Physiological implications of metabolites biosynthesis in net assimilation and heat stress tolerance of sugarcane (Saccharum officinarum) sprouts. J Plant Res 120:219–228

    Article  PubMed  Google Scholar 

  • Wahid A, Close TJ (2007) Expression of dehydrins under heat stress and their relationship with water relations of sugarcane leaves. Biol Plant 51:104–109

    Article  CAS  Google Scholar 

  • Wahid A, Gelani S, Ashraf M, Foolad MR (2007) Heat tolerance in plants: an overview. Environ Exp Bot 61:199–223

    Article  Google Scholar 

  • Wang JZ, Cui LJ, Wang Y, Li JL (2009) Growth, lipid peroxidation and photosynthesis in two tall fescue cultivars differing in heat tolerance. Biol Plant 53:247–242

    Google Scholar 

  • Wang GP, Li F, Zhang J, Zhao MR, Hui Z, Wang W (2010a) Overaccumulation of glycine betaine enhances tolerance of the photosynthetic apparatus to drought and heat stress in wheat. Photosynthetica 48:30–41

    Article  CAS  Google Scholar 

  • Wang GP, Zhang XY, Li F, Luo Y, Wang W (2010b) Overaccumulation of glycine betaine enhances tolerance to drought and heat stress in wheat leaves in the protection of photosynthesis. Photosynthetica 48:117–126

    Article  CAS  Google Scholar 

  • Wang LJ, Fan L, Loescher W, Duan W, Liu GJ, Cheng JS, Luo HB, Li SH (2010c) Salicylic acid alleviates decreases in photosynthesis under heat stress and accelerates recovery in grapevine leaves. BMC Plant Biol 10:1–10

    Article  Google Scholar 

  • Wang Z, Zhang L, Xiao Y, Chen W, Tang K (2010d) Increased vitamin C content accompanied by an enhanced recycling pathway confers oxidative stress tolerance in Arabidopsis. J Integr Plant Biol 52:400–409

    Article  CAS  PubMed  Google Scholar 

  • Warland JS, McDonald MR, McKeown AM (2006) Annual yields of five crops in the family Brassicacae in southern Ontario in relation to weather and climate. Can J Plant Sci 86:1209–1215

    Article  Google Scholar 

  • Wingler A (2002) Molecules of interest. The function of trehalose biosynthesis in plants. Phytochemistry 60:437–440

    Article  CAS  PubMed  Google Scholar 

  • Wise R, Olson A, Schrader S, Sharkey T (2004) Electron transport is the functional limitation of photosynthesis in field-grown pima cotton plants at high temperature. Plant Cell Environ 27:717–724

    Article  CAS  Google Scholar 

  • Woodward AW, Bartel B (2005) Auxin: regulation, action, and interaction. Ann Bot 95:707–735

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Xiang C, Werner BL, Christensen EM, Oliver DJ (2001) The biological functions of glutathione revisited in Arabidopsis transgenic plants with altered glutathione levels. Plant Physiol 126:564–574

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Xin L, Wuliang S, Shuqiu Z, Chenghou Z (2005) Nitric oxide involved in signal transduction of jasmonic acid-induced stomatal closure of Vicia faba L. Chin Sci Bull 50:520–525

    Google Scholar 

  • Xu S, Li J, Zhang X, Wei H, Cui L (2006) Effects of heat acclimation pretreatment on changes of membrane lipid peroxidation, antioxidant metabolites, and ultrastructure of chloroplasts in two cool-season turfgrass species under heat stress. Environ Exp Bot 56:274–285

    Article  CAS  Google Scholar 

  • Xu XD, Sun Y, Guo XQ, Sun B, Zhang J (2010) Effects of exogenous melatonin on ascorbate metabolism system in cucumber seedlings under high temperature stress. Ying Yong Sheng Tai Xue Bao 21:2580–6

    CAS  PubMed  Google Scholar 

  • Yamaguchi S (2008) Gibberellin metabolism and its regulation. Annu Rev Plant Biol 59:225–251

    Article  CAS  PubMed  Google Scholar 

  • Yang G, Rhodes D, Joly RJ (1996) Effects of high temperature on membrane stability and chlorophyll fluorescence in glycinebetaine-deficient and glycinebetaine-containing maize lines. Aust J Plant Physiol 23:437–443

    Article  CAS  Google Scholar 

  • Yang X, Liang Z, Lu C (2005) Genetic engineering of the biosynthesis of Glycinebetaine enhances photosynthesis against high temperature stress in transgenic tobacco plants. Plant Physiol 138:2299–2309

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Yang X, Wen X, Gong H (2007) Genetic engineering of the biosynthesis of glycinebetaine enhances thermotolerance of photosystem II in tobacco plants. Planta 225:719–733

    Article  CAS  PubMed  Google Scholar 

  • Yemets AI, Krasylenko YA, Lytvyn DI, Sheremet YA, Blume YB (2011) Nitric oxide signalling via cytoskeleton in plants. Plant Sci 181:545–554

    Article  CAS  PubMed  Google Scholar 

  • Yin H, Chen QM, Yi MF (2008) Effects of short-term heat stress on oxidative damage and responses of antioxidant system in Lilium longiflorum. Plant Growth Regul 54:45–54

    Article  CAS  Google Scholar 

  • Young LW, Wilen RW, Bonham-Smith PC (2004) High temperaturestress of Brassica napus during flowering reduces micro-and megagametophyte fertility, induces fruit abortion, and disrupts seed production. J Exp Bot 55:485–495

    Article  CAS  PubMed  Google Scholar 

  • Yusuf M, Fariduddin Q, Hayat S, Hasan SA, Ahmad A (2011) Protective responses of 28-homobrassinolide in cultivars of Triticum aestivum with different levels of nickel. Arch Environ Contam Toxicol 60:68–76

    Article  CAS  PubMed  Google Scholar 

  • Zavala JA, Patankar AG, Gase K, Hui D, Baldwin IT (2004) Manipulation of endogenous trypsin proteinase inhibitor production in Nicotiana attenuata demonstrates their function as antiherbivore defenses. Plant Physiol 134:1181–1190

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Zhang W, Zhou RG, Gao YJ, Zheng SZ, Xu P, Zhang SQ, Sun DY (2009) Molecular and genetic evidence for the key role of AtCaM3 in heat-shock signal transduction in Arabidopsis. Plant Physiol 149:1773–1784

    Article  PubMed Central  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We wish to thank Mr. Jubayer-Al-Mahmud, Laboratory of Plant Stress Responses, Faculty of Agriculture, Kagawa University, Japan for reading the manuscript draft.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mirza Hasanuzzaman .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Nahar, K., Hasanuzzaman, M., Ahamed, K.U., Hakeem, K.R., Ozturk, M., Fujita, M. (2015). Plant Responses and Tolerance to High Temperature Stress: Role of Exogenous Phytoprotectants. In: Hakeem, K. (eds) Crop Production and Global Environmental Issues. Springer, Cham. https://doi.org/10.1007/978-3-319-23162-4_17

Download citation

Publish with us

Policies and ethics