Skip to main content

Performance Analysis of Active Shape Reconstruction of Fractured, Incomplete Skulls

  • Conference paper
  • First Online:
Computer Analysis of Images and Patterns (CAIP 2015)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 9256))

Included in the following conference series:

Abstract

Reconstruction of normal skulls from deformed skulls is a very important but difficult task in practice. Active shape model (ASM) is among the most popular methods for reconstructing skulls. To apply ASM to skull reconstruction, it is necessary to establish shape correspondence among the training and testing samples because wrong correspondence will introduce unwanted shape variations in ASM reconstruction. Despite the popularity of ASM, the accuracy of ASM skull reconstruction has not been well investigated in existing literature. In particular, it is unclear how to estimate the reconstruction error of skulls without ground truth. This paper aims to investigate the source of error of ASM skull reconstruction. Comprehensive tests show that the error of accurate correspondence algorithm is uncorrelated and small compared to reconstruction error. On the other hand, ASM fitting error is highly correlated to reconstruction error, which allows us to estimate the reconstruction error of real deformed skulls using ASM fitting error. Moreover, ASM fitting error is correlated to the severity of skull defects, which places a limit on the reconstruction accuracy that can be achieved by ASM.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Baldock, E.R., Graham, J.: Image Processing and Analysis: A Practical Approach. Oxford University Press (2000)

    Google Scholar 

  2. Benazzi, S., Stansfield, E., Milani, C., Gruppioni, G.: Geometric morphometric methods for three-dimensional virtual reconstruction of a fragmented cranium: The case of Angelo Poliziano. Int. Journal on Legal Medicine 123(4), 333–344 (2009)

    Article  Google Scholar 

  3. Bennis, C.: Piecewise surface flattening for non-distorted texture mapping. Computer Graphics 25(4), 237–246 (1991)

    Article  Google Scholar 

  4. Berar, M., Desvignes, M., Bailly, G., Payan, Y.: 3D meshes registration : application to statistical skull model. In: Campilho, A.C., Kamel, M.S. (eds.) ICIAR 2004. LNCS, vol. 3212, pp. 100–107. Springer, Heidelberg (2004)

    Chapter  Google Scholar 

  5. Chui, H., Rangarajan, A.: A new algorithm for non-rigid point matching. In: Proc. IEEE Conf. Computer Vision and Pattern Recognition (2000)

    Google Scholar 

  6. Deng, Q., Zhou, M., Shui, W., Wu, Z., Ji, Y., Bai, R.: A novel skull registration based on global and local deformations for craniofacial reconstruction. Forensic Science Int. 208, 95–102 (2011)

    Article  Google Scholar 

  7. Elena, D.M., Chapuis, J., Pappas, I., Ferrigno, G., Hallermann, W., Schramm, A., Caversaccio, M.: Automatic extraction of the mid-facial plane for cranio-maxillofacial surgery planning. Int. J. Oral and Maxillofacial Surgery 35(7), 636–642 (2006)

    Article  Google Scholar 

  8. Floater, M.S., Hormann, K.: Surface parameterization: a tutorial and survey. In: Advances in Multiresolution for Geometric Modelling, pp. 157–186 (2005)

    Google Scholar 

  9. Gumprecht, H.K., Widenka, D.C., Lumenta, C.B.: BrainLab VectorVision Neuronavigation System: Technology and clinical experiences in 131 cases. Neurosurgery 44(1) (1999)

    Google Scholar 

  10. Gunz, P.: Statistical and Geometric Reconstruction of Hominid Crania: Reconstructing Australopithecine Ontogeny. Universität Wien (2005)

    Google Scholar 

  11. Gunz, P., Mitteroecker, P., Bookstein, F., Weber, G.: Computer aided reconstruction of human crania. In: Proc. Computer Applications and Quantitative Methods in Archaeology (2004)

    Google Scholar 

  12. Holland, P.W., Welsch, R.E.: Robust regression using iteratively reweighted least-squares. Comm. in Statistics: Theory and Methods 6(9), 813–827 (1977)

    Article  Google Scholar 

  13. Kotcheff, A.C.W., Taylor, C.J.: Automatic construction of eigenshapemodels by direct optimization. Medical Image Analysis 2(4), 303–314 (1998)

    Article  Google Scholar 

  14. Lee, M.Y., Chang, C.C., Lin, C.C., Lo, L.J., Chen, Y.R.: Medical rapid prototyping in custom implant design for craniofacial reconstruction. IEEE Trans. Systems, Man and Cybernetics 3, 2903–2908 (2003)

    Google Scholar 

  15. Lüthi, M., Albrecht, T., Vetter, T.: Building shape models from lousy data. In: Yang, G.-Z., Hawkes, D., Rueckert, D., Noble, A., Taylor, C. (eds.) MICCAI 2009, Part II. LNCS, vol. 5762, pp. 1–8. Springer, Heidelberg (2009)

    Chapter  Google Scholar 

  16. Phillips, J.M., Liu, R., Tomasi, C.: Outlier robust ICP for minimizing fractional RMSD. In: Proc. Int. Conf. 3-D Digital Imaging and Modeling (2007)

    Google Scholar 

  17. Seo, H., Thalmann, N.M.: An automatic modeling of human bodies from sizing parameters. In: Proc. ACM SIGGRAPH (2003)

    Google Scholar 

  18. Souza, A., Udupa, J.K.: Automatic landmark selection for active shape models. In: Proc. SPIE Medical Imaging (2005)

    Google Scholar 

  19. Turner, W.D., Brown, R.E., Kelliher, T.P., Tu, P.H., Taister, M.A., Miller, K.W.: A novel method of automated skull registration for forensic facial approximation. Forensic Science Int. 154, 149–158 (2005)

    Article  Google Scholar 

  20. Wei, L., Yu, W., Li, M., Li, X.: Skull assembly and completion using template-based surface matching. In: Proc. of Int. Conf. 3D Imaging, Modeling, Processing, Visualization and Transmission (2011)

    Google Scholar 

  21. Zachow, S., Lamecker, H., Elsholtz, B., Stiller, M.: Reconstruction of mandibular dysplasia using a statistical 3D shape model. In: Computer Assisted Radiology and Surgery, pp. 1238–1243 (2005)

    Google Scholar 

  22. Zhang, K., Cheng, Y., Leow, W.K.: Dense Correspondence of skull models by automatic detection of anatomical landmarks. In: Wilson, R., Hancock, E., Bors, A., Smith, W. (eds.) CAIP 2013, Part I. LNCS, vol. 8047, pp. 229–236. Springer, Heidelberg (2013)

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wee Kheng Leow .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this paper

Cite this paper

Zhang, K., Leow, W. ., Cheng, Y. (2015). Performance Analysis of Active Shape Reconstruction of Fractured, Incomplete Skulls. In: Azzopardi, G., Petkov, N. (eds) Computer Analysis of Images and Patterns. CAIP 2015. Lecture Notes in Computer Science(), vol 9256. Springer, Cham. https://doi.org/10.1007/978-3-319-23192-1_26

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-23192-1_26

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-23191-4

  • Online ISBN: 978-3-319-23192-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics