Skip to main content

On Control of Human Arm Switched Dynamics

  • Conference paper
  • First Online:
Man–Machine Interactions 4

Part of the book series: Advances in Intelligent Systems and Computing ((AISC,volume 391))

Abstract

In this paper, the analysis of switched human dynamics is shown. The analysis concerns the use of fractional-order \(PI^{\mu }D^{\lambda }\) controller and integer-order PID controller. The above-mentioned controllers are applied to control the non-linear plant, which is the human arm. The control object is described as a non-linear continuous-time switched system. The switching rule is state-dependent. At the end of the article, illustrative examples are presented. The examples show the influence of fractional order controller parameters on the quality of the responses to a given input signal.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Åström, K., Hägglund, T.: Advanced PID Control. Systems, and Automation Society, ISA-The Instrumentation (2006)

    Google Scholar 

  2. Babiarz, A., Bieda, R., Jaskot, K., Klamka, J.: The dynamics of the human arm with an observer for the capture of body motion parameters. Bull. Pol. Acad. Sci. Tech. Sci. 61(4), 955–971 (2013)

    Google Scholar 

  3. Babiarz, A., Czornik, A., Klamka, J., Niezabitowski, M., Zawiski, R.: The mathematical model of the human arm as a switched linear system. MMAR 2014, 508–513 (2014)

    Google Scholar 

  4. Babiarz, A., Klamka, J., Zawiski, R., Niezabitowski, M.: An approach to observability analysis and estimation of human arm model. In: ICCA 2014, pp. 947–952. Taichung, Taiwan (2014)

    Google Scholar 

  5. Babiarz, A.: On mathematical modelling of the human arm using switched linear system. In: ICNPAA 2014, vol. 1637, pp. 47–54. Miedzyzdroje, Poland (2014)

    Google Scholar 

  6. Badri, V., Tavazoei, M.S.: On tuning fractional order proportional-derivative controllers for a class of fractional order systems. Automatica 49(7), 2297–2301 (2013)

    Article  MathSciNet  Google Scholar 

  7. Beyl, P., Van Damme, M., Van Ham, R., Vanderborght, B., Lefeber, D.: Design and control of a knee exoskeleton powered by pleated pneumatic artificial muscles for robot-assisted gait rehabilitation. Appl. Bion. Biomech. 6(2), 229–243 (2009)

    Article  Google Scholar 

  8. Cattin, E., Roccella, S., Vitiello, N., Sardellitti, I., Artemiadis, P.K., Vacalebri, P., Vecchi, F., Carrozza, M.C., Kyriakopoulos, K.J., Dario, P.: Design and development of a novel robotic platform for neuro-robotics applications: the NEURobotics ARM (NEURARM). Adv. Robot. 22(1), 3–37 (2008)

    Article  Google Scholar 

  9. Chang, W.D., Hwang, R.C., Hsieh, J.G.: A self-tuning PID control for a class of nonlinear systems based on the lyapunov approach. J. Process Control 12(2), 233–242 (2002)

    Article  Google Scholar 

  10. Csercsik, D.: Analysis and control of a simple nonlinear limb model. Ph.D. thesis, Budapest University of Technology and Economics (2005)

    Google Scholar 

  11. Firmani, F., Park, E.J.: A comprehensive human-body dynamic model towards the development of a powered exoskeleton for paraplegics. Trans. Can. Soc. Mech. Eng. 33(4), 745–757 (2009)

    Google Scholar 

  12. Haddadin, S., Krieger, K., Kunze, M., Albu-Schaffer, A.: Exploiting potential energy storage for cyclic manipulation: an analysis for elastic dribbling with an anthropomorphic robot. In: ICIRS 2011, pp. 1789–1796. San Francisco, USA (2011)

    Google Scholar 

  13. Lee, D., Glueck, M., Khan, A., Fiume, E., Jackson, K.: A survey of modeling and simulation of skeletal muscle. ACM Trans. Graph. 28(4), 162–174 (2010)

    Google Scholar 

  14. Lee, D., Glueck, M., Khan, A., Fiume, E., Jackson, K.: Modeling and simulation of skeletal muscle for computer graphics: a survey. Found. Trends Comput. Graph. Vis. 7(4), 229–276 (2012)

    Article  Google Scholar 

  15. Li, W.: Optimal control for biological movement systems. Ph.D. thesis, University Of California (2006)

    Google Scholar 

  16. Neumann, T., Varanasi, K., Hasler, N., Wacker, M., Magnor, M., Theobalt, C.: Capture and statistical modeling of arm-muscle deformations. Comput. Graph. Forum 32(2pt3), 285–294 (2013)

    Google Scholar 

  17. Ozbay, H., Bonnet, C., Fioravanti, A.R.: PID controller design for fractional-order systems with time delays. Syst. Control Lett. 61(1), 18–23 (2012)

    Article  MathSciNet  Google Scholar 

  18. Pastor, P., Kalakrishnan, M., Meier, F., Stulp, F., Buchli, J., Theodorou, E., Schaal, S.: From dynamic movement primitives to associative skill memories. Robot. Auton. Syst. 61(4), 351–361 (2013)

    Article  Google Scholar 

  19. Podlubny, I.: Fractional-order systems and PI\(^{\lambda }\)D\(^{\mu }\)-controllers. Trans. Autom. Control 44(1), 208–214 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  20. Rosen, J., Perry, J.C.: Upper limb powered exoskeleton. Int. J. Humanoid Rob. 4(3), 529–548 (2007)

    Article  Google Scholar 

  21. Sundaravadivu, K., Arun, B., Saravanan, K.: Design of fractional order PID controller for liquid level control of spherical tank. In: ICCSCE 2011, pp. 291–295. Penang (2011)

    Google Scholar 

  22. Tejado, I., Valerio, D., Pires, P., Martins, J.: Fractional order human arm dynamics with variability analyses. Mechatronics 23(7), 805–812 (2013)

    Article  Google Scholar 

  23. Tepljakov, A., Petlenkov, E., Belikov, J.: FOMCON: Fractional-order modeling and control toolbox for MATLAB. In: MIXDES 2011, pp. 684–689. Gliwice (2011)

    Google Scholar 

  24. Tepljakov, A., Petlenkov, E., Belikov, J., Halas, M.: Design and implementation of fractional-order PID controllers for a fluid tank system. In: ACC 2013, pp. 1777–1782. Washington, USA (2013)

    Google Scholar 

  25. Ueyama, Y., Miyashita, E.: Optimal feedback control for predicting dynamic stiffness during arm movement. Trans. Ind. Electron. 61(2), 1044–1052 (2014)

    Article  Google Scholar 

  26. Zamani, M., Karimi-Ghartemani, M., Sadati, N., Parniani, M.: Design of a fractional order PID controller for an AVR using particle swarm optimization. Control Eng. Pract. 17(12), 1380–1387 (2009)

    Article  Google Scholar 

Download references

Acknowledgments

The research presented here were funded by the Silesian University of Technology grant BK-227/RAu1/2015/2.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Artur Babiarz .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this paper

Cite this paper

Babiarz, A. (2016). On Control of Human Arm Switched Dynamics. In: Gruca, A., Brachman, A., Kozielski, S., Czachórski, T. (eds) Man–Machine Interactions 4. Advances in Intelligent Systems and Computing, vol 391. Springer, Cham. https://doi.org/10.1007/978-3-319-23437-3_12

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-23437-3_12

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-23436-6

  • Online ISBN: 978-3-319-23437-3

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics