Skip to main content

Genomics of Wild Relatives and Alien Introgressions

  • Chapter
Alien Introgression in Wheat

Abstract

Alien introgression breeding is an attractive approach to recover genetic variation that was lost during wheat domestication and breeding. New alleles and genes may be introduced from wild relatives from the tribe Triticeae, which exhibits large genetic variation and many potentially useful traits. Although a range of wheat–alien introgression lines has been developed, apart from the 1BL.1RS translocation, only a few commercial wheat cultivars benefitted from alien introgression. This is a consequence of poor knowledge of genome structure of wild donors, limited ability to control chromosome behavior during meiosis in interspecific hybrids and introgression lines, difficulties in eliminating unwanted chromatin transferred simultaneously with genes of interest, as well as a lack of tools permitting large-scale production and characterization of introgression lines. Recent advances in molecular and flow cytogenetics and genomics are bound to change the situation. New insights into the meiotic recombination raise the hopes for the ability to control its frequency and distribution. The progress in comparative genome analysis provides clues about the genome collinearity between wild species and wheat, making it possible to assess chances for chromosome recombination and predict its outcomes. Genomics tools enable massive and high-resolution screening of hybrids and their progenies and characterize their genomes, including the development of markers linked to traits of interest. Until recently, little attention has been paid to the function of introgressed genes and their interaction with the host genome. However, this has been changing and all these achievements make the breeding of improved wheat cultivars using wild germplasm a realistic goal.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Adonina IG, Salina EA, Pestsova EG, Röder MS (2005) Transferability of wheat microsatellites to diploid Aegilops species and determination of chromosomal localizations of microsatellites in the S genome. Genome 48:959–970

    Article  CAS  PubMed  Google Scholar 

  • Alheit KV, Busemeyer L, Liu W, Maurer HP, Gowda M, Hahn V, Weissmann S, Ruckelshausen A, Reif JC, Würschum T (2014) Multiple-line cross QTL mapping for biomass yield and plant height in triticale (× Triticosecale Wittmack). Theor Appl Genet 127:251–260

    Article  PubMed  Google Scholar 

  • Badaeva ED, Friebe B, Gill BS (1996a) Genome differentiation in Aegilops 1 Distribution of highly repetitive DNA sequences on chromosomes of diploid species. Genome 39:293–306

    Article  CAS  PubMed  Google Scholar 

  • Badaeva ED, Friebe B, Gill BS (1996b) Genome differentiation in Aegilops 2 Physical mapping of 5S and 18S–26S ribosomal RNA gene families in diploid species. Genome 39:1150–1158

    Article  CAS  PubMed  Google Scholar 

  • Bandopadhyay R, Sharma S, Rustgi S, Singh R, Kumar A, Balyan HS, Gupta PK (2004) DNA polymorphism among 18 species of Triticum–Aegilops complex using wheat EST–SSRs. Plant Sci 166:349–356

    Article  CAS  Google Scholar 

  • Bartoš J, Paux E, Kofler R, Havránková M, Kopecký D, Suchánková P, Šafář J, Šimková H, Town CD, Lelley T, Feuillet C, Doležel J (2008) A first survey of the rye (Secale cereale) genome composition through BAC end sequencing of the short arm of chromosome 1R. BMC Plant Biol 8:95

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Bedbrook JR, Jones J, O’Dell M, Thompson RD, Flavell RB (1980) A molecular description of telomeric heterochromatin in Secale species. Cell 19:545–560

    Article  CAS  PubMed  Google Scholar 

  • Bennett MD, Finch RA, Barclay IR (1976) The time rate and mechanism of chromosome elimination in Hordeum hybrids. Chromosoma 54:175–200

    Article  Google Scholar 

  • Bentley AR, Scutari M, Gosman N, Faure S, Bedford F, Howell P, Cockram J, Rose GA, Barber T, Irigoyen J, Horsnell R, Pumfrey C, Winnie E, Schacht J, Beauchêne K, Praud S, Greenland A, Balding D, Mackay IJ (2014) Applying association mapping and genomic selection to the dissection of key traits in elite European wheat. Theor Appl Genet 127:2619–2633

    Article  CAS  PubMed  Google Scholar 

  • Bento M, Gustafson P, Viegas W, Silva M (2010) Genome merger: from sequence rearrangements in triticale to their elimination in wheat–rye addition lines. Theor Appl Genet 121:489–497

    Article  CAS  PubMed  Google Scholar 

  • Bento M, Pereira HS, Rocheta M, Gustafson P, Viegas W, Silva M (2008) Polyploidization as a retraction force in plant genome evolution: sequence rearrangements in triticale. PLoS One 3, e1402

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Berkman PJ, Skarshewski A, Manoli S, Lorenc MT, Stiller J, Smits L, Lai K, Campbell E, Kubaláková M, Šimková H, Batley J, Doležel J, Hernandez P, Edwards D (2011) Sequencing wheat chromosome arm 7BS delimits the 7BS/4AL translocation and reveals homoeologous gene conservation. Theor Appl Genet 124:423–432

    Article  PubMed  CAS  Google Scholar 

  • Blakeslee A (1937) Redoublement du nombre de chromosomes chez les plantes par traitement chimique. Compt Rend Acad Sci Paris 205:476–479

    Google Scholar 

  • Del Blanco IA, Rajaram S, Kronstad WE (2001) Agronomic potential of synthetic hexaploid wheat-derived populations. Crop Sci 41:670

    Article  Google Scholar 

  • Bolibok-Brągoszewska H, Targońska M, Bolibok L, Kilian A, Rakoczy-Trojanowska M (2014) Genome-wide characterization of genetic diversity and population structure in Secale. BMC Plant Biol 14:184

    Article  PubMed  PubMed Central  Google Scholar 

  • Bougas B, Normandeau E, Audet C, Bernatchez L (2013) Linking transcriptomic and genomic variation to growth in brook charr hybrids (Salvelinus fontinalis Mitchill.). Heredity 110:492–500

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Brenchley R, Spannagl M, Pfeifer M, Barker GLA, D’Amore R, Allen AM, McKenzie N, Kramer M, Kerhornou A, Bolser D, Kay S, Waite D, Trick M, Bancroft I, Gu Y, Huo N, Luo M-C, Sehgal S, Gill B, Kianian S, Anderson O, Kersey P, Dvorak J, McCombie WR, Hall A, Mayer KFX, Edwards KJ, Bevan MW, Hall N (2012) Analysis of the bread wheat genome using whole-genome shotgun sequencing. Nature 491:705–710

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Busch W, Martin R, Herrmann RG, Hohmann U (1995) Repeated DNA sequences isolated by microdissection. I. Karyotyping of barley (Hordeum vulgare L). Genome 38:1082–1090

    Article  CAS  PubMed  Google Scholar 

  • De Bustos A, Cuadrado A, Soler C, Jouve N (1996) Physical mapping of repetitive DNA sequences and 5S and 18S-26S rDNA in five wild species of the genus Hordeum. Chromosome Res 4:491–499

    Article  PubMed  Google Scholar 

  • Cabral AL, Jordan MC, McCartney CA, You FM, Humphreys DG, MacLachlan R, Pozniak CJ (2014) Identification of candidate genes, regions and markers for pre-harvest sprouting resistance in wheat (Triticum aestivum L). BMC Plant Biol 14:340

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Castillo A, Atienza SG, Martín AC (2014) Fertility of CMS wheat is restored by two Rf loci located on a recombined acrocentric chromosome. J Exp Bot 65:6667–6677

    Article  PubMed  PubMed Central  Google Scholar 

  • Cavanagh CR, Chao S, Wang S, Huang BE, Stephen S, Kiani S, Forrest K, Saintenac C, Brown-Guedira GL, Akhunova A, See D, Bai G, Pumphrey M, Tomar L, Wong D, Kong S, Reynolds M, da Silva ML, Bockelman H, Talbert L, Anderson JA, Dreisigacker S, Baenziger S, Carter A, Korzun V, Morrell PL, Dubcovsky J, Morell MK, Sorrells ME, Hayden MJ, Akhunov E (2013) Genome-wide comparative diversity uncovers multiple targets of selection for improvement in hexaploid wheat landraces and cultivars. Proc Natl Acad Sci 110:8057–8062

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cenci A, D’Ovidio R, Tanzarella OA, Ceoloni C, Porceddu E (1999) Identification of molecular markers linked to Pm13, an Aegilops longissima gene conferring resistance to powdery mildew in wheat. Theor Appl Genet 98:448–454

    Article  CAS  Google Scholar 

  • Chen G, Zheng Q, Bao Y, Liu S, Wang H, Li X (2012) Molecular cytogenetic identification of a novel dwarf wheat line with introgressed Thinopyrum ponticum chromatin. J Biosci 37:149–155

    Article  PubMed  Google Scholar 

  • Chen P, Liu W, Yuan J, Wang X, Zhou B, Wang S, Zhang S, Feng Y, Yang B, Liu G, Liu D, Qi L, Zhang P, Friebe B, Gill BS (2005) Development and characterization of wheat-Leymus racemosus translocation lines with resistance to Fusarium Head Blight. Theor Appl Genet 111:941–948

    Article  PubMed  Google Scholar 

  • Choulet F, Alberti A, Theil S, Glover N, Barbe V, Daron J, Pingault L, Sourdille P, Couloux A, Paux E, Leroy P, Mangenot S, Guilhot N, Gouis JL, Balfourier F, Alaux M, Jamilloux V, Poulain J, Durand C, Bellec A, Gaspin C, Safar J, Dolezel J, Rogers J, Vandepoele K, Aury J-M, Mayer K, Berges H, Quesneville H, Wincker P, Feuillet C (2014) Structural and functional partitioning of bread wheat chromosome 3B. Science 345:1249721

    Article  PubMed  CAS  Google Scholar 

  • Colasuonno P, Maria MA, Blanco A, Gadaleta A (2013) Description of durum wheat linkage map and comparative sequence analysis of wheat mapped DArT markers with rice and Brachypodium genomes. BMC Genet 14:114

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Comai L (2000) Genetic and epigenetic interactions in allopolyploid plants. Plant Mol Biol 43:387–399

    Article  CAS  PubMed  Google Scholar 

  • Comai L, Madlung A, Josefsson C, Tyagi A (2003) Do the different parental “heteromes” cause genomic shock in newly formed allopolyploids? Philos Trans R Soc Lond B Biol Sci 358:1149–1155

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cseh A, Kruppa K, Molnár I, Rakszegi M, Doležel J, Molnár-Láng M (2011) Characterization of a new 4BS.7HL wheat/barley translocation line using GISH, FISH and SSR markers and its effect on the β-glucan content of wheat. Genome 54:795–804

    Article  CAS  PubMed  Google Scholar 

  • Cuadrado A, Cardoso M, Jouve N (2008) Physical organisation of simple sequence repeats (SSRs) in Triticeae: structural, functional and evolutionary implications. Cytogenet Genome Res 120:210–219

    Article  CAS  PubMed  Google Scholar 

  • Danilova TV, Friebe B, Gill BS (2014) Development of a wheat single gene FISH map for analyzing homoeologous relationship and chromosomal rearrangements within the Triticeae. Theor Appl Genet 127:715–730

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Darkó É, Janda T, Majláth I, Szopkó D, Dulai S, Molnár I, Molnár-Láng M (2015) Salt stress response of wheat/barley addition lines carrying chromosomes from the winter barley “Manas”. Euphytica 203:491–504

    Article  Google Scholar 

  • Devos KM, Atkinson MD, Chinoy CN, Francis HA, Harcourt RL, Koebner RMD, Liu CJ, Masojć P, Xie DX, Gale MD (1993) Chromosomal rearrangements in the rye genome relative to that of wheat. Theor Appl Genet 85:673–680

    Article  CAS  PubMed  Google Scholar 

  • Devos KM, Gale MD (1993) Extended genetic maps of the homoeologous group 3 chromosomes of wheat, rye and barley. Theor Appl Genet 85:649–652

    CAS  PubMed  Google Scholar 

  • Doležel J, Číhalíková J, Lucretti S (1992) A high-yield procedure for isolation of metaphase chromosomes from root tips of Vicia faba L. Planta 188:93–98

    Article  PubMed  Google Scholar 

  • Doležel J, Kubaláková M, Paux E, Bartoš J, Feuillet C (2007) Chromosome-based genomics in the cereals. Chromosome Res 15:51–66

    Article  PubMed  CAS  Google Scholar 

  • Doležel J, Vrána J, Cápal P, Kubaláková M, Burešová V, Šimková H (2014) Advances in plant chromosome genomics. Biotechnol Adv 32:122–136

    Article  PubMed  CAS  Google Scholar 

  • Dulai S, Molnár I, Haló B, Molnár-Láng M (2010) Photosynthesis in the 7H Asakaze komugi/Manas wheat/barley addition line during salt stress. Acta Agron Hung 58:367–376

    Article  Google Scholar 

  • Dulai S, Molnár I, Szopkó D, Darkó É, Vojtkó A, Sass-Gyarmati A, Molnár-Láng M (2014) Wheat-Aegilops biuncialis amphiploids have efficient photosynthesis and biomass production during osmotic stress. J Plant Physiol 171:509–517

    Article  CAS  PubMed  Google Scholar 

  • Ellis THN, Poyser SJ, Knox MR, Vershinin AV, Ambrose MJ (1998) Polymorphism of insertion sites of Ty1-copia class retrotransposons and its use for linkage and diversity analysis in pea. Mol Gen Genet 260:9–19

    CAS  PubMed  Google Scholar 

  • Endo TR, Kubaláková M, Vrána J, Doležel J (2014) Hyperexpansion of wheat chromosomes sorted by flow cytometry. Genes Genet Syst 89:181–185

    Article  PubMed  Google Scholar 

  • Ersfeld K (2004) Fiber-FISH: fluorescence in situ hybridization on stretched DNA. Methods Mol Biol 270:395–402

    CAS  PubMed  Google Scholar 

  • Farkas A, Molnár I, Dulai S, Rapi S, Oldal V, Cseh A, Kruppa K, Molnár-Láng M (2014) Increased micronutrient content (Zn, Mn) in the 3Mb(4B) wheat-Aegilops biuncialis substitution and 3Mb.4BS translocation identified by GISH and FISH. Genome 57:61–67

    Article  CAS  PubMed  Google Scholar 

  • Farrer W (1904) Some notes on the wheat “Bobs”; its peculiarities, economic value and origin. Agric Gaz NSW 15:849–854

    Google Scholar 

  • Fatih AM (1983) Analysis of the breeding potential of wheat-Agropyron and wheat-Elymus derivatives. I. Agronomic and quality characteristics. Hereditas 98:287–295

    Article  CAS  PubMed  Google Scholar 

  • Fedak G (1999) Molecular aids for integration of alien chromatin through wide crosses. Genome 42:584–591

    Article  CAS  Google Scholar 

  • Feldman M, Liu B, Segal G, Abbo S, Levy AA, Vega JM (1997) Rapid elimination of low-copy DNA sequences in polyploid wheat: a possible mechanism for differentiation of homoeologous chromosomes. Genetics 147:1381–1387

    CAS  PubMed  PubMed Central  Google Scholar 

  • Feuillet C, Langridge P, Waugh R (2008) Cereal breeding takes a walk on the wild side. Trends Genet 24:24–32

    Article  CAS  PubMed  Google Scholar 

  • Francki MG, Crasta OR, Sharma HC, Ohm HW, Anderson JM (1997) Structural organization of an alien Thinopyrum intermedium group 7 chromosome in US soft red winter wheat (Triticum aestivum L). Genome 40:716–722

    Article  CAS  PubMed  Google Scholar 

  • Friebe B, Jiang J, Raupp WJ, McIntosh RA, Gill BS (1996) Characterization of wheat-alien translocations conferring resistance to diseases and pests: current status. Euphytica 91:59–87

    Article  Google Scholar 

  • Friebe B, Larter EN (1988) Identification of a complete set of isogenic wheat/rye D-genome substitution lines by means of Giemsa C-banding. Theor Appl Genet 76:473–479

    Article  CAS  PubMed  Google Scholar 

  • Friebe B, Zeller FJ, Mukai Y, Forster BP, Bartos P, McIntosh RA (1992) Characterization of rust-resistant wheat-Agropyron intermedium derivatives by C-banding, in situ hybridization and isozyme analysis. Theor Appl Genet 83:775–782

    Article  CAS  PubMed  Google Scholar 

  • Fu S, Yang M, Fei Y, Tan F, Ren Z, Yan B, Zhang H, Tang Z (2013) Alterations and abnormal mitosis of wheat chromosomes induced by wheat-rye monosomic addition lines. PLoS One 8, e70483

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gerlach WL, Bedbrook JR (1979) Cloning and characterization of ribosomal RNA genes from wheat and barley. Nucleic Acids Res 7:1869–1885

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gibcus JH, Dekker J (2013) The hierarchy of the 3D genome. Mol Cell 49:773–782

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gill BS, Friebe BR, White FF (2011) Alien introgressions represent a rich source of genes for crop improvement. Proc Natl Acad Sci 108:7657–7658

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gill BS, Kimber G (1974) The giemsa C-banded karyotype of rye. Proc Natl Acad Sci U S A 71:1247–1249

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gill KS, Arumuganathan K, Lee J-H (1999) Isolating individual wheat (Triticum aestivum) chromosome arms by flow cytometric analysis of ditelosomic lines. Theor Appl Genet 98:1248–1252

    Article  Google Scholar 

  • Van Ginkel M, Ogbonnaya F (2008) Using synthetic wheats to breed cultivars better adapted to changing production conditions. Field Crop Res 104:86–94

    Article  Google Scholar 

  • Giorgi D, Farina A, Grosso V, Gennaro A, Ceoloni C, Lucretti S (2013) FISHIS: fluorescence in situ hybridization in suspension and chromosome flow sorting made easy. PLoS One 8, e57994

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Griffiths S, Sharp R, Foote TN, Bertin I, Wanous M, Reader S, Colas I, Moore G (2006) Molecular characterization of Ph1 as a major chromosome pairing locus in polyploid wheat. Nature 439:749–752

    Article  CAS  PubMed  Google Scholar 

  • Grob S, Schmid MW, Grossniklaus U (2014) Hi-C analysis in Arabidopsis identifies the KNOT, a structure with similarities to the flamenco locus of Drosophila. Mol Cell 55:678–693

    Article  CAS  PubMed  Google Scholar 

  • Grosso V, Farina A, Gennaro A, Giorgi D, Lucretti S (2012) Flow sorting and molecular cytogenetic identification of individual chromosomes of Dasypyrum villosum L. (H. villosa) by a single DNA probe. PLoS One 7, e50151

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Guadagnuolo R, Bianchi DS, Felber F (2001) Specific genetic markers for wheat, spelt, and four wild relatives: comparison of isozymes, RAPDs, and wheat microsatellites. Genome 44:610–621

    Article  CAS  PubMed  Google Scholar 

  • Gupta PK, Mir RR, Mohan A, Kumar J (2008) Wheat genomics: present status and future prospects. Int J Plant Genomics 2008:896451

    CAS  PubMed  PubMed Central  Google Scholar 

  • Gupta PK, Rustgi S, Sharma S, Singh R, Kumar N, Balyan HS (2003) Transferable EST-SSR markers for the study of polymorphism and genetic diversity in bread wheat. Mol Genet Genomics 270:315–323

    Article  CAS  PubMed  Google Scholar 

  • Gupta PK, Varshney RK, Sharma PC, Ramesh B (1999) Molecular markers and their applications in wheat breeding. Plant Breeding 118:369–390

    Article  CAS  Google Scholar 

  • Hajjar R, Hodgkin T (2007) The use of wild relatives in crop improvement: a survey of developments over the last 20 years. Euphytica 156:1–13

    Article  Google Scholar 

  • Han FP, Fedak G, Ouellet T, Liu B (2003) Rapid genomic changes in interspecific and intergeneric hybrids and allopolyploids of Triticeae. Genome 46:716–723

    Article  CAS  PubMed  Google Scholar 

  • Hart GE, Islam AKMR, Shepherd KW (1980) Use of isozymes as chromosome markers in the isolation and characterization of wheat-barley chromosome addition lines. Genet Res 36:311–325

    Article  CAS  Google Scholar 

  • Haseneyer G, Schmutzer T, Seidel M, Zhou R, Mascher M, Schön C-C, Taudien S, Scholz U, Stein N, Mayer KFX, Bauer E (2011) From RNA-seq to large-scale genotyping - genomics resources for rye (Secale cereale L). BMC Plant Biol 11:131

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • He C, Holme J, Anthony J (2014) SNP genotyping: the KASP assay. Crop Breed (Springer, New York) 2014:75–86

    Article  CAS  Google Scholar 

  • Helguera M, Rivarola M, Clavijo B, Martis MM, Vanzetti LS, González S, Garbus I, Leroy P, Šimková H, Valárik M, Caccamo M, Doležel J, Mayer KFX, Feuillet C, Tranquilli G, Paniego N, Echenique V (2015) New insights into the wheat chromosome 4D structure and virtual gene order, revealed by survey pyrosequencing. Plant Sci 233:200–212

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hernandez P, Martis M, Dorado G, Gálvez S, Pfeifer M, Schaaf S, Jouve N, Šimková H, Valárik M, Doležel J, Mayer KFX (2012) Next-generation sequencing and syntenic integration of flow-sorted arms of wheat chromosome 4A exposes the chromosome structure and gene content. Plant J 69:377–386

    Article  CAS  PubMed  Google Scholar 

  • Hernández P, Rubio MJ, Martin A (1996) Development of RAPD markers in tritordeum and addition lines of Hordeum chilense in Triticum aestivum. Plant Breeding 115:52–56

    Article  Google Scholar 

  • Hurni S, Brunner S, Stirnweis D, Herren G, Peditto D, McIntosh RA, Keller B (2014) The powdery mildew resistance gene Pm8 derived from rye is suppressed by its wheat ortholog Pm3. Plant J 79:904–913

    Article  CAS  PubMed  Google Scholar 

  • Iehisa JCM, Ohno R, Kimura T, Enoki H, Nishimura S, Okamoto Y, Nasuda S, Takumi S (2014) A high-density genetic map with array-based markers facilitates structural and quantitative trait locus analyses of the common wheat genome. DNA Res 21:555–567

    Article  PubMed  PubMed Central  Google Scholar 

  • International Rice Genome Sequencing Project (2005) The map-based sequence of the rice genome. Nature 436:793–800

    Article  CAS  Google Scholar 

  • Islam AKMR, Shepherd KW, Sparrow DHB (1981) Isolation and characterization of euplasmic wheat-barley chromosome addition lines. Heredity 46:161–174

    Article  Google Scholar 

  • The International Wheat Genome Sequencing Consortium (IWGSC) (2014) A chromosome-based draft sequence of the hexaploid bread wheat (Triticum aestivum) genome. Science 345:1251788

    Article  CAS  Google Scholar 

  • Jaccoud D, Peng K, Feinstein D, Kilian A (2001) Diversity Arrays: a solid state technology for sequence information independent genotyping. Nucleic Acids Res 29:e25

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jackson SA, Wang ML, Goodman HM, Jiang J (1998) Application of fiber-FISH in physical mapping of Arabidopsis thaliana. Genome 41:566–572

    Article  CAS  PubMed  Google Scholar 

  • Jakobson I, Peusha H, Timofejeva L, Järve K (2006) Adult plant and seedling resistance to powdery mildew in a Triticum aestivum x Triticum militinae hybrid line. Theor Appl Genet 112:760–769

    Article  PubMed  Google Scholar 

  • Jakobson I, Reis D, Tiidema A, Peusha H, Timofejeva L, Valárik M, Kladivová M, Šimková H, Doležel J, Järve K (2012) Fine mapping, phenotypic characterization and validation of non-race-specific resistance to powdery mildew in a wheat–Triticum militinae introgression line. Theor Appl Genet 125:609–623

    Article  PubMed  Google Scholar 

  • Jeffrey Chen Z, Ni Z (2006) Mechanisms of genomic rearrangements and gene expression changes in plant polyploids. Bioessays 28:240–252

    Article  PubMed  PubMed Central  Google Scholar 

  • Jiang J, Friebe B, Gill B (1993) Recent advances in alien gene transfer in wheat. Euphytica 73:199–212

    Article  CAS  Google Scholar 

  • Jighly A, Oyiga BC, Makdis F, Nazari K, Youssef O, Tadesse W, Abdalla O, Ogbonnaya FC (2015) Genome-wide DArT and SNP scan for QTL associated with resistance to stripe rust (Puccinia striiformis f. sp. tritici) in elite ICARDA wheat (Triticum aestivum L.) germplasm. Theor Appl Genet 128:1277–1295

    Article  CAS  PubMed  Google Scholar 

  • Jing H-C, Bayon C, Kanyuka K, Berry S, Wenzl P, Huttner E, Kilian A, Hammond-Kosack KE (2009) DArT markers: diversity analyses, genomes comparison, mapping and integration with SSR markers in Triticum monococcum. BMC Genomics 10:458

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Jing HC, Kornyukhin D, Kanyuka K, Orford S, Zlatska A, Mitrofanova OP, Koebner R, Hammond-Kosack K (2007) Identification of variation in adaptively important traits and genome-wide analysis of trait-marker associations in Triticum monococcum. J Exp Bot 58:3749–3764

    Article  CAS  PubMed  Google Scholar 

  • Jupe J, Stam R, Howden AJ, Morris JA, Zhang R, Hedley PE, Huitema E (2013) Phytophthora capsici-tomato interaction features dramatic shifts in gene expression associated with a hemi-biotrophic lifestyle. Genome Biol 14:R63

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Kalih R, Maurer HP, Miedaner T (2015) Genetic architecture of fusarium head blight resistance in four winter triticale populations. Phytopathology 105:334–341

    Article  CAS  PubMed  Google Scholar 

  • Karafiátová M, Bartoš J, Kopecký D, Ma L, Sato K, Houben A, Stein N, Doležel J (2013) Mapping non-recombining regions in barley using multicolor FISH. Chromosome Res 21:739–751

    Article  PubMed  CAS  Google Scholar 

  • Kashkush K, Feldman M, Levy AA (2002) Gene loss, silencing and activation in a newly synthesized wheat allotetraploid. Genetics 160:1651–1659

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kerber ER, Aung T (1999) Leaf rust resistance gene Lr34 associated with nonsuppression of stem rust resistance in the wheat cultivar Canthatch. Phytopathology 89:518–521

    Article  CAS  PubMed  Google Scholar 

  • Kerber ER, Dyck PL (1973) Inheritance of stem rust resistance transferred from diploid wheat (Triticum monococcum) to tetraploid and hexaploid wheat and chromosome location of the gene involved. Can J Genet Cytol 15:397–409

    Article  Google Scholar 

  • Khalil HB, Ehdaeivand M-R, Xu Y, Laroche A, Gulick PJ (2015) Identification and characterization of rye genes not expressed in allohexaploid triticale. BMC Genomics 16:281

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Kihara H (1937) Genomanalyse bei Triticum und Aegilops. Kurze übersicht über die Ergebnisse der Jahre 1934–36. Mem Coll Agr Kyoto Imp Univ 41:1–61

    Google Scholar 

  • King J, Armstead I, Harper J, Ramsey L, Snape J, Waugh R, James C, Thomas A, Gasior D, Kelly R, Roberts L, Gustafson P, King I (2013) Exploitation of interspecific diversity for monocot crop improvement. Heredity 110:475–483

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • King IP, Purdie KA, Rezanoor HN, Koebner RMD, Miller TE, Reader SM, Nicholson P (1993) Characterization of Thinopyrum bessarabicum chromosome segments in wheat using random amplified polymorphic DNAs (RAPDs) and genomic in situ hybridization. Theor Appl Genet 86:895–900

    CAS  PubMed  Google Scholar 

  • Koba T, Takumi S, Shimada T (1997) Isolation, identification and characterization of disomic and translocated barley chromosome addition lines of common wheat. Euphytica 96:289–296

    Article  Google Scholar 

  • Kroupin PY, Divashuk MG, Fesenko IA, Karlov GI (2012) Evaluating wheat microsatellite markers for the use in genetic analysis of Thinopyrum, Dasypyrum, and Pseudoroegneria species. Dataset Paper Sci 2013, e949637

    Google Scholar 

  • Kruppa K, Sepsi A, Szakács É, Röder MS, Molnár-Láng M (2013) Characterization of a 5HS-7DS.7DL wheat-barley translocation line and physical mapping of the 7D chromosome using SSR markers. J Appl Genet 54:251–258

    Article  CAS  PubMed  Google Scholar 

  • Kruse A (1973) Hordeum × Triticum hybrids. Hereditas 73:157–161

    Article  Google Scholar 

  • Kubaláková M, Kovářová P, Suchánková P, Číhalíková J, Bartoš J, Lucretti S, Watanabe N, Kianian SF, Doležel J (2005) Chromosome sorting in tetraploid wheat and its potential for genome analysis. Genetics 170:823–829

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Kubaláková M, Valárik M, Barto J, Vrána J, Cíhalíková J, Molnár-Láng M, Dolezel J (2003) Analysis and sorting of rye (Secale cereale L) chromosomes using flow cytometry. Genome 46:893–905

    Article  PubMed  Google Scholar 

  • Kubaláková M, Vrána J, Číhalíková J, Šimková H, Doležel J (2002) Flow karyotyping and chromosome sorting in bread wheat (Triticum aestivum L). Theor Appl Genet 104:1362–1372

    Article  PubMed  Google Scholar 

  • Kuraparthy V, Chhuneja P, Dhaliwal HS, Kaur S, Bowden RL, Gill BS (2007) Characterization and mapping of cryptic alien introgression from Aegilops geniculata with new leaf rust and stripe rust resistance genes Lr57 and Yr40 in wheat. Theor Appl Genet 114:1379–1389

    Article  CAS  PubMed  Google Scholar 

  • Langridge P, Lagudah ES, Holton TA, Appels R, Sharp PJ, Chalmers KJ (2001) Trends in genetic and genome analyses in wheat: a review. Aust J Agric Res 52:1043–1077

    Article  CAS  Google Scholar 

  • Lapitan NLV, Sears RG, Gill BS (1984) Translocations and other karyotypic structural changes in wheat x rye hybrids regenerated from tissue culture. Theor Appl Genet 68:547–554

    Article  CAS  PubMed  Google Scholar 

  • Laurie DA, Bennett MD (1986) Wheat × maize hybridization. Can J Genet Cytol 28:313–316

    Article  Google Scholar 

  • Lee H-S, Chen ZJ (2001) Protein-coding genes are epigenetically regulated in Arabidopsis polyploids. Proc Natl Acad Sci U S A 98:6753–6758

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lee J-H, Arumuganathan K, Chung Y-S, Kim K-Y, Chung W-B, Bae K-S, Kim D-H, Chung D-S, Kwon O-C (2000) Flow cytometric analysis and chromosome sorting of barley (Hordeum vulgare L). Mol Cells 10:619–625

    Article  CAS  PubMed  Google Scholar 

  • Lee J-H, Arumuganathan K, Yen Y, Kaeppler S, Kaeppler H, Baenziger PS (1997) Root tip cell cycle synchronization and metaphase-chromosome isolation suitable for flow sorting in common wheat (Triticum aestivum L). Genome 40:633–638

    Article  CAS  PubMed  Google Scholar 

  • Levy AA, Feldman M (2004) Genetic and epigenetic reprogramming of the wheat genome upon allopolyploidization. Biol J Linn Soc 82:607–613

    Article  Google Scholar 

  • Li J, Wan H-S, Yang W-Y (2014) Synthetic hexaploid wheat enhances variation and adaptive evolution of bread wheat in breeding processes. J Syst Evol 52:735–742

    Article  Google Scholar 

  • Li LJ, Arumuganathan K, Rines HW, Phillips RL, Riera-Lizarazu O, Sandhu D, Zhou Y, Gill KS (2001) Flow cytometric sorting of maize chromosome 9 from an oat-maize chromosome addition line. Theor Appl Genet 102:658–663

    Article  CAS  Google Scholar 

  • Linc G, Sepsi A, Molnár-Láng M (2012) A FISH karyotype to study chromosome polymorphisms for the Elytrigia elongata E genome. Cytogenet Genome Res 136:138–144

    Article  CAS  PubMed  Google Scholar 

  • Ling H-Q, Zhao S, Liu D, Wang J, Sun H, Zhang C, Fan H, Li D, Dong L, Tao Y, Gao C, Wu H, Li Y, Cui Y, Guo X, Zheng S, Wang B, Yu K, Liang Q, Yang W, Lou X, Chen J, Feng M, Jian J, Zhang X, Luo G, Jiang Y, Liu J, Wang Z, Sha Y, Zhang B, Wu H, Tang D, Shen Q, Xue P, Zou S, Wang X, Liu X, Wang F, Yang Y, An X, Dong Z, Zhang K, Zhang X, Luo M-C, Dvorak J, Tong Y, Wang J, Yang H, Li Z, Wang D, Zhang A, Wang J (2013) Draft genome of the wheat A-genome progenitor Triticum urartu. Nature 496:87–90

    Article  CAS  PubMed  Google Scholar 

  • Liu B, Vega JM, Segal G, Abbo S, Rodova M, Feldman M (1998) Rapid genomic changes in newly synthesized amphiploids of Triticum and Aegilops. I. Changes in low-copy noncoding DNA sequences. Genome 41:272–277

    Article  CAS  Google Scholar 

  • Liu W-H, Luan Y, Wang J-C, Wang X-G, Su J-J, Zhang J-P, Yang X-M, Gao A-N, Li L-H (2010) Production and identification of wheat – Agropyron cristatum (1.4P) alien translocation lines. Genome 53:472–481

    Article  CAS  PubMed  Google Scholar 

  • Lucas SJ, Akpınar BA, Šimková H, Kubaláková M, Doležel J, Budak H (2014) Next-generation sequencing of flow-sorted wheat chromosome 5D reveals lineage-specific translocations and widespread gene duplications. BMC Genomics 15:1080

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Lukaszewski AJ, Gustafson JP (1983) Translocations and modifications of chromosomes in triticale × wheat hybrids. Theor Appl Genet 64:239–248

    Article  CAS  PubMed  Google Scholar 

  • Luo M-C, Gu YQ, You FM, Deal KR, Ma Y, Hu Y, Huo N, Wang Y, Wang J, Chen S, Jorgensen CM, Zhang Y, McGuire PE, Pasternak S, Stein JC, Ware D, Kramer M, McCombie WR, Kianian SF, Martis MM, Mayer KFX, Sehgal SK, Li W, Gill BS, Bevan MW, Šimková H, Doležel J, Weining S, Lazo GR, Anderson OD, Dvorak J (2013) A 4-gigabase physical map unlocks the structure and evolution of the complex genome of Aegilops tauschii, the wheat D-genome progenitor. Proc Natl Acad Sci U S A 110:7940–7945

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lynch M, Conery JS (2000) The evolutionary fate and consequences of duplicate genes. Science 290:1151–1155

    Article  CAS  PubMed  Google Scholar 

  • Lysák MA, Cíhalíková J, Kubaláková M, Simková H, Künzel G, Dolezel J (1999) Flow karyotyping and sorting of mitotic chromosomes of barley (Hordeum vulgare L). Chromosome Res 7:431–444

    Article  PubMed  Google Scholar 

  • Martis MM, Zhou R, Haseneyer G, Schmutzer T, Vrána J, Kubaláková M, König S, Kugler KG, Scholz U, Hackauf B, Korzun V, Schön C-C, Doležel J, Bauer E, Mayer KFX, Stein N (2013) Reticulate evolution of the rye genome. Plant Cell 25:3685–3698

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ma X-F, Gustafson JP (2008) Allopolyploidization-accommodated genomic sequence changes in triticale. Ann Bot 101:825–832

    Article  PubMed  PubMed Central  Google Scholar 

  • Ma X-F, Gustafson JP (2006) Timing and rate of genome variation in triticale following allopolyploidization. Genome 49:950–958

    Article  CAS  PubMed  Google Scholar 

  • Mayer KFX, Martis M, Hedley PE, Šimková H, Liu H, Morris JA, Steuernagel B, Taudien S, Roessner S, Gundlach H, Kubaláková M, Suchánková P, Murat F, Felder M, Nussbaumer T, Graner A, Salse J, Endo T, Sakai H, Tanaka T, Itoh T, Sato K, Platzer M, Matsumoto T, Scholz U, Dolezel J, Waugh R, Stein N (2011) Unlocking the barley genome by chromosomal and comparative genomics. Plant Cell 23:1249–1263

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mayer KFX, Taudien S, Martis M, Šimková H, Suchánková P, Gundlach H, Wicker T, Petzold A, Felder M, Steuernagel B, Scholz U, Graner A, Platzer M, Doležel J, Stein N (2009) Gene content and virtual gene order of barley chromosome 1H. Plant Physiol 151:496–505

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • McArthur RI, Zhu X, Oliver RE, Klindworth DL, Xu SS, Stack RW, Wang RR-C, Cai X (2012) Homoeology of Thinopyrum junceum and Elymus rectisetus chromosomes to wheat and disease resistance conferred by the Thinopyrum and Elymus chromosomes in wheat. Chromosome Res 20:699–715

    Article  CAS  PubMed  Google Scholar 

  • McIntyre CL, Pereira S, Moran LB, Appels R (1990) New Secale cereale (rye) DNA derivatives for the detection of rye chromosome segments in wheat. Genome 33:635–640

    Article  CAS  PubMed  Google Scholar 

  • Meurant G (1982) Advances in genetics. Academic, New York, NY

    Google Scholar 

  • Mohan A, Goyal A, Singh R, Balyan HS, Gupta PK (2007) Physical mapping of wheat and rye expressed sequence tag–simple sequence repeats on wheat chromosomes. Crop Sci 47:3

    Article  CAS  Google Scholar 

  • Molnár I, Gáspár L, Sárvári É, Dulai S, Hoffmann B, Molnár-Láng M, Galiba G (2004) Physiological and morphological responses to water stress in Aegilops biuncialis and Triticum aestivum genotypes with differing tolerance to drought. Funct Plant Biol 31:1149–1159

    Article  Google Scholar 

  • Molnár I, Benavente E, Molnár-Láng M (2009) Detection of intergenomic chromosome rearrangements in irradiated Triticum aestivum-Aegilops biuncialis amphiploids by multicolour genomic in situ hybridization. Genome 52:156–165

    Article  PubMed  CAS  Google Scholar 

  • Molnár I, Cifuentes M, Schneider A, Benavente E, Molnár-Láng M (2011a) Association between simple sequence repeat-rich chromosome regions and intergenomic translocation breakpoints in natural populations of allopolyploid wild wheats. Ann Bot 107:65–76

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Molnár I, Kubaláková M, Šimková H, Cseh A, Molnár-Láng M, Doležel J (2011b) Chromosome isolation by flow sorting in Aegilops umbellulata and Ae. comosa and their allotetraploid hybrids Ae. biuncialis and Ae. geniculata. PLoS One 6, e27708

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Molnár I, Kubaláková M, Šimková H, Farkas A, Cseh A, Megyeri M, Vrána J, Molnár-Láng M, Doležel J (2014) Flow cytometric chromosome sorting from diploid progenitors of bread wheat, T. urartu, Ae. speltoides and Ae. tauschii. Theor Appl Genet 127:1091–1104

    Article  PubMed  Google Scholar 

  • Molnár I, Šimková H, Leverington-Waite M, Goram R, Cseh A, Vrána J, Farkas A, Doležel J, Molnár-Láng M, Griffiths S (2013) Syntenic relationships between the U and M genomes of Aegilops, wheat and the model species Brachypodium and rice as revealed by COS markers. PLoS One 8, e70844

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Molnár I, Vrána J, Farkas A, Kubaláková M, Cseh A, Molnár-Láng M, Doležel J (2015) Flow sorting of C-genome chromosomes from wild relatives of wheat Aegilops markgrafii, Ae triuncialis and Ae cylindrica, and their molecular organization. Ann Bot 116:189–200. doi:10.1093/aob/mcv073

    Article  PubMed  Google Scholar 

  • Molnár-Láng M, Kruppa K, Cseh A, Bucsi J, Linc G (2012) Identification and phenotypic description of new wheat: six-rowed winter barley disomic additions. Genome 55:302–311

    Article  PubMed  CAS  Google Scholar 

  • Molnár-Láng M, Linc G, Friebe BR, Sutka J (2000) Detection of wheat-barley translocations by genomic in situ hybridization in derivatives of hybrids multiplied in vitro. Euphytica 112:117–123

    Article  Google Scholar 

  • Molnár-Láng M, Novotny C, Linc G, Nagy ED (2005) Changes in the meiotic pairing behaviour of a winter wheat-winter barley hybrid maintained for a long term in tissue culture, and tracing the barley chromatin in the progeny using GISH and SSR markers. Plant Breeding 124:247–252

    Article  Google Scholar 

  • Molnár-Láng M, Molnár I, Szakács É, Linc G, Bedö Z (2014) Production and molecular cytogenetic identification of wheat-alien hybrids and introgression lines. In: Tuberosa R, Graner A, Frison E (eds) Genomics of plant genetic resources. Springer, Dordrecht, pp 255–283, doi:10.1007/978-94-007-7572-5

    Chapter  Google Scholar 

  • Montilla-Bascón G, Rispail N, Sánchez-Martín J, Rubiales D, Mur LAJ, Langdon T, Howarth CJ, Prats E (2015) Genome-wide association study for crown rust (Puccinia coronata f.sp. avenae) and powdery mildew (Blumeria graminis f.sp. avenae) resistance in an oat (Avena sativa) collection of commercial varieties and landraces. Front. Plant Sci 6:103

    Google Scholar 

  • Mujeeb-Kazi A (1995) Intergeneric crosses: hybrid production and utilization. In: Mujeeb-Kazi A, Hettel GP (eds) Utilizing wild grass biodiversity in wheat improvement: 15 years of wide cross research at CIMMYT. CIMMYT, Mexico, p 140

    Google Scholar 

  • Mukhopadhyay P, Singla-Pareek SL, Reddy MK, Sopory SK (2013) Stress-mediated alterations in chromatin architecture correlate with down-regulation of a gene encoding 60S rpL32 in rice. Plant Cell Physiol 54(4):528–540

    Article  CAS  PubMed  Google Scholar 

  • Murashige T, Skoog F (1962) A revised medium for rapid growth and bio assays with tobacco tissue cultures. Physiol Plant 15:473–497

    Article  CAS  Google Scholar 

  • Nagaki K, Tsujimoto H, Isono K, Sasakuma T (1995) Molecular characterization of a tandem repeat, Afa family, and its distribution among Triticeae. Genome 38:479–486

    Article  CAS  PubMed  Google Scholar 

  • Nagy ED, Lelley T (2003) Genetic and physical mapping of sequence-specific amplified polymorphic (SSAP) markers on the 1RS chromosome arm of rye in a wheat background. Theor Appl Genet 107:1271–1277

    Article  CAS  PubMed  Google Scholar 

  • Nagy ED, Molnár I, Schneider A, Kovács G, Molnár-Láng M (2006) Characterization of chromosome-specific S-SAP markers and their use in studying genetic diversity in Aegilops species. Genome 49:289–296

    Article  CAS  PubMed  Google Scholar 

  • Nagy ED, Molnár-Láng M, Linc G, Láng L (2002) Identification of wheat-barley translocations by sequential GISH and two-colour FISH in combination with the use of genetically mapped barley SSR markers. Genome 45:1238–1247

    Article  CAS  PubMed  Google Scholar 

  • Ng DW-K, Zhang C, Miller M, Shen Z, Briggs SP, Chen ZJ (2012) Proteomic divergence in Arabidopsis autopolyploids and allopolyploids and their progenitors. Heredity 108:419–430

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Osborn TC, Chris Pires J, Birchler JA, Auger DL, Jeffery Chen Z, Lee H-S, Comai L, Madlung A, Doerge RW, Colot V, Martienssen RA (2003) Understanding mechanisms of novel gene expression in polyploids. Trends Genet 19:141–147

    Article  CAS  PubMed  Google Scholar 

  • Pace CD, Snidaro D, Ciaffi M, Vittori D, Ciofo A, Cenci A, Tanzarella OA, Qualset CO, Mugnozza GTS (2001) Introgression of Dasypyrum villosum chromatin into common wheat improves grain protein quality. Euphytica 117:67–75

    Article  Google Scholar 

  • Parisod C, Senerchia N (2012) Responses of transposable elements to polyploidy In plant transposable elements. In: Grandbastien M-A, Casacuberta JM (eds) Topics in current genetics. Springer, Berlin, pp 147–168

    Google Scholar 

  • Paterson AH, Bowers JE, Bruggmann R, Dubchak I, Grimwood J, Gundlach H, Haberer G, Hellsten U, Mitros T, Poliakov A, Schmutz J, Spannagl M, Tang H, Wang X, Wicker T, Bharti AK, Chapman J, Feltus FA, Gowik U, Grigoriev IV, Lyons E, Maher CA, Martis M, Narechania A, Otillar RP, Penning BW, Salamov AA, Wang Y, Zhang L, Carpita NC, Freeling M, Gingle AR, Hash CT, Keller B, Klein P, Kresovich S, McCann MC, Ming R, Peterson DG, Mehboob-ur-Rahman, Ware D, Westhoff P, Mayer KFX, Messing J, Rokhsar DS (2009) The Sorghum bicolor genome and the diversification of grasses. Nature 457:551–556

    Google Scholar 

  • Peil A, Korzun V, Schubert V, Schumann E, Weber WE, Röder MS (1998) The application of wheat microsatellites to identify disomic Triticum aestivum-Aegilops markgrafii addition lines. Theor Appl Genet 96:138–146

    Article  CAS  Google Scholar 

  • Peleg Z, Saranga Y, Suprunova T, Ronin Y, Röder MS, Kilian A, Korol AB, Fahima T (2008) High-density genetic map of durum wheat x wild emmer wheat based on SSR and DArT markers. Theor Appl Genet 117:103–115

    Article  CAS  PubMed  Google Scholar 

  • Petersen S, Lyerly JH, Worthington ML, Parks WR, Cowger C, Marshall DS, Brown-Guedira G, Murphy JP (2015) Mapping of powdery mildew resistance gene Pm53 introgressed from Aegilops speltoides into soft red winter wheat. Theor Appl Genet 128:303–312

    Article  CAS  PubMed  Google Scholar 

  • Pradhan GP, Prasad PVV (2015) Evaluation of wheat chromosome translocation lines for high temperature stress tolerance at grain filling stage. PLoS One 10

    Google Scholar 

  • Pumphrey M, Bai J, Laudencia-Chingcuanco D, Anderson O, Gill BS (2009) Nonadditive expression of homoeologous genes is established upon polyploidization in hexaploid wheat. Genetics 181:1147–1157

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Qi L, Cao M, Chen P, Li W, Liu D (1996) Identification, mapping, and application of polymorphic DNA associated with resistance gene Pm21 of wheat. Genome 39:191–197

    Article  CAS  PubMed  Google Scholar 

  • Qi L, Echalier B, Friebe B, Gill BS (2003) Molecular characterization of a set of wheat deletion stocks for use in chromosome bin mapping of ESTs. Funct Integr Genomics 3:39–55

    CAS  PubMed  Google Scholar 

  • Qi L, Friebe B, Zhang P, Gill BS (2007) Homoeologous recombination, chromosome engineering and crop improvement. Chromosome Res 15:3–19

    Article  CAS  PubMed  Google Scholar 

  • Qi LL, Echalier B, Chao S, Lazo GR, Butler GE, Anderson OD, Akhunov ED, Dvorák J, Linkiewicz AM, Ratnasiri A, Dubcovsky J, Bermudez-Kandianis CE, Greene RA, Kantety R, La Rota CM, Munkvold JD, Sorrells SF, Sorrells ME, Dilbirligi M, Sidhu D, Erayman M, Randhawa HS, Sandhu D, Bondareva SN, Gill KS, Mahmoud AA, Ma XF, Miftahudin, Gustafson JP, Conley EJ, Nduati V, Gonzalez-Hernandez JL, Anderson JA, Peng JH, Lapitan NL, Hossain KG, Kalavacharla V, Kianian SF, Pathan MS, Zhang DS, Nguyen HT, Choi DW, Fenton RD, Close TJ, McGuire PE, Qualset CO, Gill BS (2004) A chromosome bin map of 16,000 expressed sequence tag loci and distribution of genes among the three genomes of polyploid wheat. Genetics 168:701–712

    Google Scholar 

  • Qi LL, Wang SL, Chen PD, Liu DJ, Friebe B, Gill BS (1997) Molecular cytogenetic analysis of Leymus racemosus chromosomes added to wheat. Theor Appl Genet 95:1084–1091

    Article  CAS  Google Scholar 

  • Queen RA, Gribbon BM, James C, Jack P, Flavell AJ (2003) Retrotransposon-based molecular markers for linkage and genetic diversity analysis in wheat. Mol Genet Genomics 271:91–97

    Article  PubMed  CAS  Google Scholar 

  • Rabinovich SV (1998) Importance of wheat-rye translocations for breeding modern cultivar of Triticum aestivum L. Euphytica 100:323–340

    Article  Google Scholar 

  • Rayburn AL, Gill BS (1985) Use of biotin-labeled probes to map specific DNA sequences on wheat chromosomes. J Hered 76:78–81

    Google Scholar 

  • Reynolds MP, Calderini DF, Condon AG, Rajaram S (2001) Physiological basis of yield gains in wheat associated with the Lr19 translocation from Agropyron elongatum Wheat in a global environment. In: Bedö Z, Láng L (eds) Developments in plant breeding. Springer, Amsterdam, pp 345–351

    Google Scholar 

  • Riley R, Chapman V (1958) Genetic control of the cytologically diploid behaviour of hexaploid wheat. Nature 182:713–715

    Article  Google Scholar 

  • Riley R, Macer RCF (1966) The chromosomal distribution of the genetic resistance of rye to wheat pathogens. Can J Genet Cytol 8:640–653

    Article  Google Scholar 

  • Ruperao P, Chan C-KK, Azam S, Karafiátová M, Hayashi S, Čížková J, Saxena RK, Šimková H, Song C, Vrána J, Chitikineni A, Visendi P, Gaur PM, Millán T, Singh KB, Taran B, Wang J, Batley J, Doležel J, Varshney RK, Edwards D (2014) A chromosomal genomics approach to assess and validate the desi and kabuli draft chickpea genome assemblies. Plant Biotechnol J 12:778–786

    Article  CAS  PubMed  Google Scholar 

  • Sanei M, Pickering R, Kumke K, Nasuda S, Houben A (2011) Loss of centromeric histone H3 (CENH3) from centromeres precedes uniparental chromosome elimination in interspecific barley hybrids. Proc Natl Acad Sci U S A 108:E498–E505

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schlegel R, Cakmak I, Torun B, Eker S, Tolay I, Ekiz H, Kalayci M, Braun HJ (1998) Screening for zinc efficiency among wheat relatives and their utilisation for alien gene transfer. Euphytica 100:281–286

    Article  CAS  Google Scholar 

  • Schnable PS, Ware D, Fulton RS, Stein JC, Wei F, Pasternak S, Liang C, Zhang J, Fulton L, Graves TA, Minx P, Reily AD, Courtney L, Kruchowski SS, Tomlinson C, Strong C, Delehaunty K, Fronick C, Courtney B, Rock SM, Belter E, Du F, Kim K, Abbott RM, Cotton M, Levy A, Marchetto P, Ochoa K, Jackson SM, Gillam B, Chen W, Yan L, Higginbotham J, Cardenas M, Waligorski J, Applebaum E, Phelps L, Falcone J, Kanchi K, Thane T, Scimone A, Thane N, Henke J, Wang T, Ruppert J, Shah N, Rotter K, Hodges J, Ingenthron E, Cordes M, Kohlberg S, Sgro J, Delgado B, Mead K, Chinwalla A, Leonard S, Crouse K, Collura K, Kudrna D, Currie J, He R, Angelova A, Rajasekar S, Mueller T, Lomeli R, Scara G, Ko A, Delaney K, Wissotski M, Lopez G, Campos D, Braidotti M, Ashley E, Golser W, Kim H, Lee S, Lin J, Dujmic Z, Kim W, Talag J, Zuccolo A, Fan C, Sebastian A, Kramer M, Spiegel L, Nascimento L, Zutavern T, Miller B, Ambroise C, Muller S, Spooner W, Narechania A, Ren L, Wei S, Kumari S, Faga B, Levy MJ, McMahan L, Van Buren P, Vaughn MW, Ying K, Yeh CT, Emrich SJ, Jia Y, Kalyanaraman A, Hsia AP, Barbazuk WB, Baucom RS, Brutnell TP, Carpita NC, Chaparro C, Chia JM, Deragon JM, Estill JC, Fu Y, Jeddeloh JA, Han Y, Lee H, Li P, Lisch DR, Liu S, Liu Z, Nagel DH, McCann MC, SanMiguel P, Myers AM, Nettleton D, Nguyen J, Penning BW, Ponnala L, Schneider KL, Schwartz DC, Sharma A, Soderlund C, Springer NM, Sun Q, Wang H, Waterman M, Westerman R, Wolfgruber TK, Yang L, Yu Y, Zhang L, Zhou S, Zhu Q, Bennetzen JL, Dawe RK, Jiang J, Jiang N, Presting GG, Wessler SR, Aluru S, Martienssen RA, Clifton SW, McCombie WR, Wing RA, Wilson RK (2009) The B73 maize genome: complexity, diversity, and dynamics. Science 326:1112–1115

    Google Scholar 

  • Schneider A, Molnár I, Molnár-Láng M (2008) Utilisation of Aegilops (goatgrass) species to widen the genetic diversity of cultivated wheat. Euphytica 163:1–19

    Article  CAS  Google Scholar 

  • Schubert I, Shi F, Fuchs J, Endo TR (1998) An efficient screening for terminal deletions and translocations of barley chromosomes added to common wheat. Plant J 14:489–495

    Article  CAS  Google Scholar 

  • Schubert V, Rudnik R, Schubert I (2014) Chromatin associations in Arabidopsis interphase nuclei. Front Genet 5:389

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Schwarzacher T, Leitch AR, Bennett MD, Heslop-Harrison JS (1989) In situ localization of parental genomes in a wide hybrid. Ann Bot 64:315–324

    Google Scholar 

  • Schwarzacher T, Wang ML, Leitch AR, Moore G, Heslop-Harrison JS, Miller N (1997) Flow cytometric analysis of the chromosomes and stability of a wheat cell-culture line. Theor Appl Genet 94:91–97

    Article  CAS  PubMed  Google Scholar 

  • Sears ER (1956) The transfer of leaf-rust resistance from Aegilops umbellulata to wheat. Brook-haven symposia in biology, 1956. Genet Plant Breed 1956:1–22

    Google Scholar 

  • Senerchia N, Felber F, Parisod C (2014) Contrasting evolutionary trajectories of multiple retrotransposons following independent allopolyploidy in wild wheats. New Phytol 202:975–985

    Article  CAS  PubMed  Google Scholar 

  • Sepsi A, Molnár I, Szalay D, Molnár-Láng M (2008) Characterization of a leaf rust-resistant wheat-Thinopyrum ponticum partial amphiploid BE-1, using sequential multicolor GISH and FISH. Theor Appl Genet 116:825–834

    Article  CAS  PubMed  Google Scholar 

  • Sergeeva EM, Afonnikov DA, Koltunova MK, Gusev VD, Miroshnichenko LA, Vrána J, Kubaláková M, Poncet C, Sourdille P, Feuillet C, Doležel J, Salina EA (2014) Common wheat chromosome 5B composition analysis using low-coverage 454 sequencing. Plant Genome 7:2

    Article  CAS  Google Scholar 

  • Seyfarth R, Feuillet C, Schachermayr G, Winzeler M, Keller B (1999) Development of a molecular marker for the adult plant leaf rust resistance gene Lr35 in wheat. Theor Appl Genet 99:554–560

    Article  CAS  PubMed  Google Scholar 

  • Shaked H, Kashkush K, Ozkan H, Feldman M, Levy AA (2001) Sequence elimination and cytosine methylation are rapid and reproducible responses of the genome to wide hybridization and allopolyploidy in wheat. Plant Cell 13:1749–1760

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Šimková H, Svensson JT, Condamine P, Hřibová E, Suchánková P, Bhat PR, Bartoš J, Šafář J, Close TJ, Doležel J (2008) Coupling amplified DNA from flow-sorted chromosomes to high-density SNP mapping in barley. BMC Genomics 9:294

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Soltis DE, Soltis PS, Tate JA (2004) Advances in the study of polyploidy since plant speciation. New Phytol 161:173–191

    Article  CAS  Google Scholar 

  • Stirnweis D, Milani SD, Brunner S, Herren G, Buchmann G, Peditto D, Jordan T, Keller B (2014) Suppression among alleles encoding nucleotide-binding-leucine-rich repeat resistance proteins interferes with resistance in F1 hybrid and allele-pyramided wheat plants. Plant J 79:893–903

    Article  CAS  PubMed  Google Scholar 

  • Suchánková P, Kubaláková M, Kovářová P, Bartoš J, Číhalíková J, Molnár-Láng M, Endo TR, Doležel J (2006) Dissection of the nuclear genome of barley by chromosome flow sorting. Theor Appl Genet 113:651–659

    Article  PubMed  CAS  Google Scholar 

  • Szakács É, Molnár-Láng M (2007) Development and molecular cytogenetic identification of new winter wheat – winter barley (“Martonvásári 9 kr1” – “Igri”) disomic addition lines. Genome 50:43–50

    Article  PubMed  Google Scholar 

  • Szakács É, Molnár-Láng M (2008) Fluorescent in situ hybridization polymorphism on the 1RS chromosome arms of cultivated Secale cereale species. Cereal Res Commun 36:247–255

    Article  CAS  Google Scholar 

  • Szakács É, Kruppa K, Molnár-Láng M (2013) Analysis of chromosomal polymorphism in barley (Hordeum vulgare L. ssp. vulgare) and between H. vulgare and H. chilense using three-color fluorescence in situ hybridization (FISH). J Appl Genet 54:427–433

    Article  PubMed  CAS  Google Scholar 

  • Tanaka T, Kobayashi F, Joshi GP, Onuki R, Sakai H, Kanamori H, Wu J, Simkova H, Nasuda S, Endo TR, Hayakawa K, Doležel J, Ogihara Y, Itoh T, Matsumoto T, Handa H (2014) Next-generation survey sequencing and the molecular organization of wheat chromosome 6B. DNA Res 21:103–114

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tang KS, Hart GE (1975) Use of isozymes as chromosome markers in wheat-rye addition lines and in triticale. Genet Res 26:187–201

    Article  CAS  Google Scholar 

  • Tautz D (1989) Hypervariabflity of simple sequences as a general source for polymorphic DNA markers. Nucleic Acids Res 17:6463–6471

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tayalé A, Parisod C (2013) Natural pathways to polyploidy in plants and consequences for genome reorganization. Cytogenet Genome Res 140:79–96

    Article  PubMed  Google Scholar 

  • The International Barley Genome Sequencing Consortium (2012) A physical, genetic and functional sequence assembly of the barley genome. Nature 491:711–716

    Google Scholar 

  • The International Brachypodium Initiative (2010) Genome sequencing and analysis of the model grass Brachypodium distachyon. Nature 463:763–768

    Article  CAS  Google Scholar 

  • Tiwari VK, Wang S, Sehgal S, Vrána J, Friebe B, Kubaláková M, Chhuneja P, Doležel J, Akhunov E, Kalia B, Sabir J, Gill BS (2014) SNP Discovery for mapping alien introgressions in wheat. BMC Genomics 15:273

    Article  PubMed  PubMed Central  Google Scholar 

  • Valárik M, Bartos J, Kovárová P, Kubaláková M, de Jong JH, Dolezel J (2004) High-resolution FISH on super-stretched flow-sorted plant chromosomes. Plant J 37:940–950

    Article  PubMed  CAS  Google Scholar 

  • Vos P, Hogers R, Bleeker M, Reijans M, van de Lee T, Hornes M, Frijters A, Pot J, Peleman J, Kuiper M (1995) AFLP: a new technique for DNA fingerprinting. Nucleic Acids Res 23:4407–4414

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Vrána J, Kubaláková M, Simková H, Číhalíkovái J, Lysák MA, Dolezel J (2000) Flow sorting of mitotic chromosomes in common wheat (Triticum aestivum L). Genetics 156:2033–2041

    PubMed  PubMed Central  Google Scholar 

  • Wang ML, Leitch AR, Schwarzacher T, Heslop-Harrison JS, Moore G (1992) Construction of a chromosome-enriched Hpall library from flow-sorted wheat chromosomes. Nucleic Acids Res 20:1897–1901

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang RR-C, Chen J, Joppa LR (1995) Production and identification of chromosome specific RAPD markers for Langdon durum wheat disomic substitution lines. Crop Sci 35:886

    Article  CAS  Google Scholar 

  • Wang S, Wong D, Forrest K, Allen A, Chao S, Huang BE, Maccaferri M, Salvi S, Milner SG, Cattivelli L, Mastrangelo AM, Whan A, Stephen S, Barker G, Wieseke R, Plieske J, International Wheat Genome Sequencing Consortium, Lillemo M, Mather D, Appels R, Dolferus R, Brown-Guedira G, Korol A, Akhunova AR, Feuillet C, Salse J, Morgante M, Pozniak C, Luo MC, Dvorak J, Morell M, Dubcovsky J, Ganal M, Tuberosa R, Lawley C, Mikoulitch I, Cavanagh C, Edwards KJ, Hayden M, Akhunov E (2014) Characterization of polyploid wheat genomic diversity using a high-density 90 000 single nucleotide polymorphism array. Plant Biotechnol J 12:787–796

    Google Scholar 

  • Warburton ML, Crossa J, Franco J, Kazi M, Trethowan R, Rajaram S, Pfeiffer W, Zhang P, Dreisigacker S, van Ginkel M (2006) Bringing wild relatives back into the family: recovering genetic diversity in CIMMYT improved wheat germplasm. Euphytica 149:289–301

    Article  CAS  Google Scholar 

  • Waugh R, McLean K, Flavell AJ, Pearce SR, Kumar A, Thomas BBT, Powell W (1997) Genetic distribution of Bare–1-like retrotransposable elements in the barley genome revealed by sequence-specific amplification polymorphisms (S-SAP). Mol Gen Genet 253:687–694

    Article  CAS  PubMed  Google Scholar 

  • Williams JGK, Kubelik AR, Livak KJ, Rafalski JA, Tingey SV (1990) DNA polymorphisms amplified by arbitrary primers are useful as genetic markers. Nucleic Acids Res 18:6531–6535

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wilson AS (1876) Wheat and rye hybrids. Trans Proc Bot Soc (Edinb) 12:286–288

    Article  Google Scholar 

  • Wulff BBH, Moscou MJ (2014) Strategies for transferring resistance into wheat: from wide crosses to GM cassettes. Front Plant Sci 5:692

    Article  PubMed  PubMed Central  Google Scholar 

  • Wu Y, Sun Y, Wang X, Lin X, Sun S, Shen K, Wang J, Jiang T, Zhong S, Xu C, Liu B (2015) Transcriptome shock in an interspecific F1 triploid hybrid of Oryza revealed by RNA sequencing. J Integr Plant Biol. doi:10.1111/jipb.12357

    Google Scholar 

  • Xiong LZ, Xu CG, Maroof MAS, Zhang Q (1999) Patterns of cytosine methylation in an elite rice hybrid and its parental lines, detected by a methylation-sensitive amplification polymorphism technique. Mol Gen Genet 261:439–446

    Article  CAS  PubMed  Google Scholar 

  • Yabe S, Hara T, Ueno M, Enoki H, Kimura T, Nishimura S, Yasui Y, Ohsawa R, Iwata H (2014) Rapid genotyping with DNA micro-arrays for high-density linkage mapping and QTL mapping in common buckwheat (Fagopyrum esculentum Moench.). Breed Sci 64:291–299

    Article  PubMed  PubMed Central  Google Scholar 

  • Yamamoto M, Mukai Y (1989) Application of fluorescence in situ hybridization to molecular cytogenetics of wheat. Wheat Inf Serv 69:30–32

    Google Scholar 

  • Yang X, Cao A, Sun Y, Chen P (2013) Tracing the location of powdery mildew resistance-related gene Stpk-V by FISH with a TAC clone in Triticum aestivum-Haynaldia villosa alien chromosome lines. Chin Sci Bull 58:4084–4091

    Article  CAS  Google Scholar 

  • Yasui Y, Nasuda S, Matsuoka Y, Kawahara T (2001) The Au family, a novel short interspersed element (SINE) from Aegilops umbellulata. Theor Appl Genet 102:463–470

    Article  CAS  Google Scholar 

  • Yingshan D, Xiuling B, Yushi L, Mengyuan H, Bao L (2004) Molecular characterization of a cryptic wheat-Thinopyrum intermedium translocation line: evidence for genomic instability in nascent allopolyploid and aneuploid lines. Genet Mol Biol 27:237–241

    Article  Google Scholar 

  • Yoo M-J, Szadkowski E, Wendel JF (2013) Homoeolog expression bias and expression level dominance in allopolyploid cotton. Heredity 110:171–180

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yu H, Deng Z, Xiang C, Tian J (2014) Analysis of diversity and linkage disequilibrium mapping of agronomic traits on B-genome of wheat. J Genomics 2:20–30

    Article  PubMed  PubMed Central  Google Scholar 

  • Yu J-K, Rota ML, Kantety RV, Sorrells ME (2004) EST derived SSR markers for comparative mapping in wheat and rice. Mol Genet Genomics 271:742–751

    Article  CAS  PubMed  Google Scholar 

  • Zarco-Hernandez JA, Santiveri F, Michelena A, Javier Peña R (2005) Durum wheat (Triticum turgidum L.) carrying the 1BL.1RS chromosomal translocation: agronomic performance and quality characteristics under Mediterranean conditions. Eur J Agron 22:33–43

    Article  CAS  Google Scholar 

  • Zhang H, Jia J, Gale MD, Devos KM (1998) Relationships between the chromosomes of Aegilops umbellulata and wheat. Theor Appl Genet 96:69–75

    Article  CAS  Google Scholar 

  • Zhang J, Liu W, Han H, Song L, Bai L, Gao Z, Zhang Y, Yang X, Li X, Gao A, Li L (2015) De novo transcriptome sequencing of Agropyron cristatum to identify available gene resources for the enhancement of wheat. Genomics. doi:10.1016/j.ygeno.2015.04.003

    Google Scholar 

  • Zhang P, Li W, Fellers J, Friebe B, Gill BS (2004a) BAC-FISH in wheat identifies chromosome landmarks consisting of different types of transposable elements. Chromosoma 112:288–299

    Article  CAS  PubMed  Google Scholar 

  • Zhang P, Li W, Friebe B, Gill BS (2004b) Simultaneous painting of three genomes in hexaploid wheat by BAC-FISH. Genome 47:979–987

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We thank our colleagues Michael Abrouk, Veronika Burešová, Petr Cápal and Gabriella Linc for useful comments and sharing their unpublished results. This work has been supported by the National Program of Sustainability (award no. LO 2014), the Czech Science Foundation (award no. P501-12-G090), the Hungarian National Research Fund (K112226 and K116277), János Bólyai Research Scholarship from the Hungarian Academy of Sciences, and an OECD fellowship (TAD/CRP JA00079297).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jaroslav Doležel .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Rey, E., Molnár, I., Doležel, J. (2015). Genomics of Wild Relatives and Alien Introgressions. In: Molnár-Láng, M., Ceoloni, C., Doležel, J. (eds) Alien Introgression in Wheat. Springer, Cham. https://doi.org/10.1007/978-3-319-23494-6_13

Download citation

Publish with us

Policies and ethics