Skip to main content

Qualitative and Quantitative Monitoring of Spatio-Temporal Properties

  • Conference paper
  • First Online:
Runtime Verification

Part of the book series: Lecture Notes in Computer Science ((LNPSE,volume 9333))

Abstract

We address the specification and verification of spatio-temporal behaviours of complex systems, extending Signal Spatio-Temporal Logic (SSTL) with a spatial operator capable of specifying topological properties in a discrete space. The latter is modelled as a weighted graph, and provided with a boolean and a quantitative semantics. Furthermore, we define efficient monitoring algorithms for both the boolean and the quantitative semantics. These are implemented in a Java tool available online. We illustrate the expressiveness of SSTL and the effectiveness of the monitoring procedures on the formation of patterns in a Turing reaction-diffusion system.

Work partially funded by the EU-FET project QUANTICOL (nr. 600708), by the German Research Council (DFG) as part of the Cluster of Excellence on Multimodal Computing and Interaction at Saarland University and the IT MIUR project CINA. We thank Diego Latella and Ezio Bartocci for the discussions and EB for sharing the code to generate traces of the example.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Due to lack of space all proofs are omitted. The interested reader may refer to [17].

  2. 2.

    Time bounds can be restricted to rational numbers, hence there always exists an \(h>0\) satisfying all assumptions.

  3. 3.

    The assumption of Lipschitz continuity holds whenever the primary signal is the solution of an ODE with a locally Lipschitz vector field, as usually is the case.

  4. 4.

    jSSTL is available on-line at https://bitbucket.org/LauraNenzi/jsstl.

  5. 5.

    http://jgrapht.org.

  6. 6.

    For simplicity, here we fix \(\delta =1\). Note that using a non-uniform mesh the weights of the edges of the resulting graph will not be uniform.

References

  1. Aiello, M., Pratt-Hartmann, I., van Benthem, J. (eds.): Handbook of Spatial Logics. Springer, Netherlands (2007)

    MATH  Google Scholar 

  2. Alur, R., Feder, T., Henzinger, T.: The benefits of relaxing punctuality. J. ACM 43(1), 116–146 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  3. Bartocci, E., Bortolussi, L., Nenzi, L., Sanguinetti, G.: System design of stochastic models using robustness of temporal properties. Theor. Comput. Sci. 587, 3–25 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  4. Bortolussi, L., Nenzi, L.: Specifying and monitoring properties of stochastic spatio-temporal systems in signal temporal logic. In: Proceedings of VALUETOOLS (2014)

    Google Scholar 

  5. Ciancia, V., Latella, D., Loreti, M., Massink, M.: Specifying and verifying properties of space. In: Diaz, J., Lanese, I., Sangiorgi, D. (eds.) TCS 2014. LNCS, vol. 8705, pp. 222–235. Springer, Heidelberg (2014)

    Google Scholar 

  6. Ciancia, V., Gilmore, S., Grilletti, G., Latella, D., Loreti, M., Massink, M.: Spatio-temporal model-checking of vehicular movement in public transport systems. (Submitted, 2015)

    Google Scholar 

  7. Ciancia, V., Gilmore, S., Latella, D., Loreti, M., Massink, M.: Data verification for collective adaptive systems: spatial model-checking of vehicle location data. In: Proceedings of SASOW (2014)

    Google Scholar 

  8. Donzé, A., Ferrère, T., Maler, O.: Efficient robust monitoring for STL. In: Sharygina, N., Veith, H. (eds.) CAV 2013. LNCS, vol. 8044, pp. 264–279. Springer, Heidelberg (2013)

    Chapter  Google Scholar 

  9. Donzé, A., Maler, O.: Robust satisfaction of temporal logic over real-valued signals. In: Chatterjee, K., Henzinger, T.A. (eds.) FORMATS 2010. LNCS, vol. 6246, pp. 92–106. Springer, Heidelberg (2010)

    Chapter  Google Scholar 

  10. Fainekos, G.E., Pappas, G.J.: Robustness of temporal logic specifications for continuous-time signals. Theore. Comput. Sci. 410(42), 4262–4291 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  11. Galton, A.: The mereotopology of discrete space. In: Freksa, C., Mark, D.M. (eds.) COSIT 1999. LNCS, vol. 1661, pp. 251–266. Springer, Heidelberg (1999)

    Google Scholar 

  12. Gol, E.A., Bartocci, E., Belta, C.: A formal methods approach to pattern synthesis in reaction diffusion systems. In: Proceedings of CDC (2014)

    Google Scholar 

  13. Grosu, R., Bartocci, E., Corradini, F., Entcheva, E., Smolka, S.A., Wasilewska, A.: Learning and detecting emergent behavior in networks of cardiac myocytes. In: Egerstedt, M., Mishra, B. (eds.) HSCC 2008. LNCS, vol. 4981, pp. 229–243. Springer, Heidelberg (2008)

    Chapter  Google Scholar 

  14. Haghighi, I., Jones, A., Kong, J.Z., Bartocci, E., Grosu, R., Belta, C.: SpaTeL: a novel spatial-temporal logic and its applications to networked systems. In: Proceedings of HSCC (2015)

    Google Scholar 

  15. Maler, O., Nickovic, D.: Monitoring temporal properties of continuous signals. In: Lakhnech, Y., Yovine, S. (eds.) FORMATS 2004 and FTRTFT 2004. LNCS, vol. 3253, pp. 152–166. Springer, Heidelberg (2004)

    Chapter  Google Scholar 

  16. Mari, L., Bertuzzo, E., Righetto, L., Casagrandi, R., Gatto, M., Rodriguez-Iturbe, I., Rinaldo, A.: Modelling cholera epidemics: the role of waterways, human mobility and sanitation. J. Roy. Soc. Interface 9(67), 376–388 (2012)

    Article  Google Scholar 

  17. Nenzi, L., Bortolussi, L., Ciancia, V., Loreti, M., Massink, M.: Qualitative and quantitative monitoring of spatio-temporal properties. extended version. Technical report 06, QUANTICOL (2015). http://goo.gl/fWx88i

  18. Turing, A.M.: The chemical basis of morphogenesis. Philos. Trans. Roy. Soc. Lond. B Biol. Sci. 237(641), 37–72 (1952)

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Laura Nenzi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this paper

Cite this paper

Nenzi, L., Bortolussi, L., Ciancia, V., Loreti, M., Massink, M. (2015). Qualitative and Quantitative Monitoring of Spatio-Temporal Properties. In: Bartocci, E., Majumdar, R. (eds) Runtime Verification. Lecture Notes in Computer Science(), vol 9333. Springer, Cham. https://doi.org/10.1007/978-3-319-23820-3_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-23820-3_2

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-23819-7

  • Online ISBN: 978-3-319-23820-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics