Skip to main content

Combinatorial Materials Science, and a Perspective on Challenges in Data Acquisition, Analysis and Presentation

  • Chapter
  • First Online:
Information Science for Materials Discovery and Design

Part of the book series: Springer Series in Materials Science ((SSMATERIALS,volume 225))

Abstract

Combinatorial Materials Science is the rapid synthesis and analysis of large numbers of compositions in parallel, created through many combinations of a relatively small number of starting materials. It is, therefore, essential that for a truly combinatorial approach both synthesis and measurement must be high-throughput, to handle the large number of samples required. Since the first serious attempts at combinatorial searches in Materials Science in the mid 1990s, the technique is still very much in its infancy, falling way behind the progress made in biomedical and organic combinatorial chemistry, despite attracting increasing interest from industry. The most investigated materials by combinatorial methods are catalysts and phosphors, and most work has been on libraries in deposited thin film form. This chapter will give a broad overview of the different synthetic strategies used, with a particular look at the difficulties of producing thick film or bulk ceramic/metal-oxide libraries. A vast number of characteristics can be quantified in combinatorial materials libraries, from compositional, crystal phase, structural and microstructural information, to functional properties including catalytic/photocatalytic, optical/luminescent, electrical/dielectric, piezoelectric/ferroelectric, magnetic, oxygen-conducting, water-splitting, mechanical, thermal/thermoelectric, magnetoelectric/optoelectric/magneto-optic/multiferroic, bioactive/biocompatible, etc. This chapter will cover the range of high-throughput measurements open in combinatorial Materials Science, and especially the challenges in presenting and displaying the large and complex amount of data obtained for functional materials libraries. To this end, the use of glyphs is looked at, glyphs being data points that also contain extra levels of information/data in graphic form.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. R.B. Merrifield, Solid phase peptide synthesis. I. The synthesis of a tetrapeptide. J. Am. Chem. Soc. 85, 2149–2153 (1963)

    Article  Google Scholar 

  2. K. Kenedy, T. Stefansky, G. Davy, V.F. Zacky, E.R. Parker, Rapid mapping for determining ternary-alloy phase diagrams. J. Appl. Phys. 36, 10–3808 (1965)

    Google Scholar 

  3. J.J. Hanak, The multiple sample concept in materials research; synthesis, compositional analysis and testing of entire multi-component systems. J. Mater. Sci. 5, 964–971 (1970)

    Article  Google Scholar 

  4. S.R. Hall, M.T.R. Harrison, The search for new superconductors. Chem. Br. 30, 739–742 (1994)

    Google Scholar 

  5. X.-D. Xiang, X. Sun, G. Briceno, Y. Lou, K.-A. Wang, H. Chang, W.G. Wallace-Freedman, S.-W. Chen, P.G. Schultz, A combinatorial approach to materials discovery. Science 268, 1738–1740 (1995)

    Article  Google Scholar 

  6. Proceedings of the first Japan-US Workshop on Combinatorial Materials Science and Technology. Appl. Surf. Sci. 189, 175–371 (2002)

    Google Scholar 

  7. Proceedings of the Second Japan-US Workshop on Combinatorial Materials Science and Technology. Appl. Surf. Sci. 223, 1–267 (2004)

    Google Scholar 

  8. H. Koinuma, I. Tekeuchi, Combinatorial solid-state chemistry of inorganic materials. Nat. Mater. 3, 429–438 (2004)

    Article  Google Scholar 

  9. R.A. Potyrailo, I. Takeuchi, Role of high throughput characterization tools in combinatorial materials science. Meas. Sci. Tech. 16, 1–4 (2005)

    Article  Google Scholar 

  10. J.-C. Zhao, Combinatorial approaches as effective tools in the study of phase diagrams and composition-structure relationships. Prog. Mater. Sci. 51, 557–631 (2006)

    Article  Google Scholar 

  11. J. Ouellette, Combinatorial materials synthesis. Ind. Phys. 4, 24–27 (1998)

    Google Scholar 

  12. E.W. McFarland, W.H. Weinberg, Combinatorial approaches to materials discovery. Trends Biotechnol. 17, 107–115 (1999)

    Article  Google Scholar 

  13. Y. Matsumoto, M. Murakami, Z. Jin, A. Ohtomo, M. Lippmaa, M. Kawasaki, H. Koinuma, Combinatorial laser molecular beam epitaxy (MBE) growth of Mg–Zn–O alloy for band gap engineering. Jpn. J. Appl. Phys. 38, L603–L606 (1999)

    Article  Google Scholar 

  14. R.B. van Dover, L.F. Schneemeyer, R.M. Fleming, Discovery of a useful thin film dielectric using a compositional-spread approach. Nature 392, 24–27 (1998)

    Article  Google Scholar 

  15. K.W. Kim, M.K. Jeon, K.S. Oh, T.S. Kim, Y.S. Kim, S.I. Woo, Combinatorial approach for ferroelectric material libraries prepared by liquid source misted chemical deposition method. Proc. Natl. Acad. Sci. USA 104, 1134–9 (2007)

    Article  Google Scholar 

  16. T. Fukumura, M. Ohtani, M. Kawasaki, Y. Okimoto, T. Kageyama, T. Koida, T. Hasegawa, Rapid construction of a phase diagram of doped Mott insulators with a composition-spread approach. Appl. Phys. Lett. 77, 3426–3428 (2000); T. Fukumura, M. Kawasaki, Z. Jin, H. Kimura, Y. Yamada, M. Haemori, Y. Matsumoto, K. Inaba, M. Murakami, R. Takahashi, T. Hasegawa, H. Koinuma, Combinatorial search for transparent oxide diluted magnetic semiconductors, in Proceedings of the Materials Research Society, vol. 700 (2001) S2.6

    Google Scholar 

  17. A. Kafizas, G. Hyett, I.P. Parkin, Combinatorial atmospheric pressure chemical vapour deposition (cAPCVD) of a mixed vanadium oxide and vanadium oxynitride thin film. J. Mater. Chem. 19, 1399–1408 (2009)

    Article  Google Scholar 

  18. R. Takahashi, H. Kubota, M. Murakami, Y. Yamamoto, Y. Matsumoto, H. Koinuma, Design of combinatorial shadow masks for complete ternary-phase diagramming of solid state materials. J. Comb. Chem. 6, 50–53 (2004)

    Article  Google Scholar 

  19. R. Wendelbo, D.E. Akporiakye, A. Karlsson, M. Plassen, A. Olafsen, Combinatorial hydrothermal synthesis and characterisation of perovskites. J. Eur. Ceram. Soc. 26, 849–859 (2006)

    Article  Google Scholar 

  20. J.R.G. Evans, M.J. Edirisinghe, P.V. Coveney, J. Eames, Combinatorial searches of inorganic materials using the ink-jet printer; science, philosophy and technology. J. Eur. Ceram. Soc. 21, 2291–2299 (2001)

    Article  Google Scholar 

  21. C.J. Vess, J. Gilmore, N. Kohrt, P.J. McGinn, Combinatorial synthesis of oxide powders with an autopipetting system. J. Comb. Chem. 6, 86–90 (2004)

    Article  Google Scholar 

  22. S. Yang, J.R.G. Evans, Device for preparing combinatorial libraries in powder metallurgy. J. Comb. Chem. 6, 549–555 (2004)

    Article  Google Scholar 

  23. J. Ding, J. Bao, S. Sun, Z. Luo, C. Gao, Combinatorial discovery of visible-light driven photocatalysts based on the ABO\(_{3}\)-type (A) Y, La, Nd, Sm, Eu, Gd, Dy, Yb, B) Al and In) binary oxides. J. Comb. Chem. 11, 523–526 (2009)

    Article  Google Scholar 

  24. A. Cabañas, J.A. Darr, E. Lester, M. Poliakoff, Continuous hydrothermal synthesis of inorganic materials in a near-critical water flow reactor; the one-step synthesis of nano-particulate Ce\(_{1-\text{ x }}\)Zr\(_{\text{ x }}\)O\(_{2}\) (x=0-1) solid solutions. J. Mater. Chem. 11, 561–568 (2001)

    Article  Google Scholar 

  25. R. Wendelbo, D.E. Akporiakye, A. Karlsson, M. Plassen, A. Olafsen, Combinatorial hydrothermal synthesis and characterisation of perovskites. J. Eur. Ceram. Soc. 26, 849–859 (2006)

    Article  Google Scholar 

  26. I. Yanase, T. Ohtaki, M. Watanabe, Combinatorial study on nano-particle mixture prepared by robot system. Appl. Surf. Sci. 189, 292–299 (2002)

    Article  Google Scholar 

  27. T.A. Stegk, R. Janssen, G.A. Schneider, High-throughput synthesis and characterization of bulk ceramics from dry powders. J. Comb. Chem. 10, 274–279 (2008)

    Article  Google Scholar 

  28. Y. Zhan, L. Chen, S. Yang, J.R.G. Evans, Thick film ceramic combinatorial libraries: the substrate problem. QSAR Comb. Sci. 26, 1036–1045 (2007)

    Article  Google Scholar 

  29. M.M. Mohebi, J.R.G. Evans, A drop-on-demand ink-jet printer for combinatorial libraries and functionally graded ceramics. J. Comb. Chem. 4, 267–274 (2002)

    Article  Google Scholar 

  30. Z.-L. Luo, B. Geng, J. Bao, C. Gao, Parallel solution combustion synthesis for combinatorial materials studies. J. Comb. Chem. 7, 942–946 (2005)

    Article  Google Scholar 

  31. T.-S. Chan, C.-C. Kang, R.-S. Liu, L. Chen, X.-N. Liu, J.-J. Ding, J. Bao, C. Gao, Combinatorial study of the optimization of Y\(_{2}\)O\(_{3}\):Bi. Eu Red Phosphors. J. Comb. Chem. 9, 343–346 (2007)

    Article  Google Scholar 

  32. T.-S. Chan, Y.-M. Liu, R.-S. Liu, Combinatorial search for green and blue phosphors of high thermal stabilities under UV excitation based on the K(Sr\(_{1-x-y})\)PO\(_{4}\):Tb\(^{3+}\) \(_{x}\)Eu\(^{2+}\) \(_{y}\) system. J. Comb. Chem. 10, 847–850 (2008)

    Article  Google Scholar 

  33. J. Wang, J.R.G. Evans, London University Search Instrument: a combinatorial robot for high-throughput methods in ceramic science. J. Comb. Chem. 7, 665–672 (2005)

    Google Scholar 

  34. R.C. Pullar, Y. Zhang, L. Chen, S. Yang, J.R.G. Evans, N. McN, Alford, manufacture and measurement of combinatorial libraries of dielectric ceramics, part I: physical characterisation of Ba\(_{1-{\text{ x }}}\)Sr\(_{\text{ x }}\)TiO\(_{3}\) libraries. J. Eur. Ceram. Soc. 27, 3861–3865 (2007)

    Article  Google Scholar 

  35. R.C. Pullar, Y. Zhang, L. Chen, S. Yang, J.R.G. Evans, P.Kr. Petrov, A.N. Salak, D.A. Kiselev, A.L. Kholkin, V.M. Ferreira, N.McN. Alford, Manufacture and measurement of combinatorial libraries of dielectric ceramics, part II: dielectric measurements of Ba\(_{1-x}\) libraries. J. Eur. Ceram. Soc. 27, 4437–4443 (2007)

    Google Scholar 

  36. R.C. Pullar, Y. Zhang, L. Chen, S. Yang, J.R.G. Evans, A.N. Salak, D.A. Kiselev, A.L. Kholkin, V.M. Ferreira, N. McN, Alford, dielectric measurements on a novel Ba\(_{1-x}\) (BCT) bulk ceramic combinatorial library. J. Electroceram. 22, 245–251 (2009)

    Google Scholar 

  37. J.C.H. Rossiny, S. Fearn, J.A. Kilner, Y. Zhang, L. Chen, Combinatorial searching for novel mixed conductors. Solid State Ion. 177, 1789–1794 (2006)

    Article  Google Scholar 

  38. B. Wessler, V. Jehanno, W. Rossner, W.F. Maier, Combinatorial synthesis of thin film libraries for microwave dielectrics. Appl. Surf. Sci. 223, 30–34 (2004)

    Article  Google Scholar 

  39. M.L. Green, P.K. Schenck, K.-S. Chang, J. Ruglovsky, M. Vaudin, Higher-\(\kappa \) dielectrics for advanced silicon microelectronic devices: a combinatorial research study. Microelectron. Eng. 86, 1662–1664 (2009)

    Article  Google Scholar 

  40. R.-P. Herber, C. Schröter, B. Wessler, G.A. Schneider, High throughput screening of piezoelectric response of ferroelectric thin films with automated scanning probe microscopy. Thin Solid Films 516, 8609–8682 (2008)

    Article  Google Scholar 

  41. J.L. Jones, A. Pramanick, J.E. Daniels, High-throughput evaluation of domain switching in piezoelectric ceramics and application to PbZ\(_{r0.6}\) doped with La and Fe. Appl. Phys. Lett. 93, (152904) (2008)

    Google Scholar 

  42. T. Chikyow, P. Ahmet, K Nakajima, T. Koida, M. Takakura, M. Yoshimoto, H. Koinuma, A combinatorial approach in oxide/semiconductor interface research for future electronic devices. Appl. Surf. Sci. 189, 284-291 (2002)

    Google Scholar 

  43. S. Guerin, B.E. Hayden, D. Pletcher, M.E. Rendall, J.-P. Suchsland, L.J. Williams, Combinatorial approach to the study of particle size effects in electrocatalysis: synthesis of supported Gold nanoparticles. J. Comb. Chem. 8, 791–798 (2006)

    Article  Google Scholar 

  44. P. Cong, A. Dehestani, R. Doolen, D.M. Giaquinta, S. Guan, V. Markov, D. Poojary, K. Self, H. Turner, W.H. Weinberg, Combinatorial discovery of oxidative dehydrogenation catalysts within the Mo-V-Nb-O system. Proc. Natl. Acad. Sci. USA 96, 11077–11080 (1999)

    Article  Google Scholar 

  45. S.J. Henderson, A.L. Hector, M.T. Weller, High throughput synthesis of pigments by solution deposition. Mater. Res. Soc. Symp. Proc. 848(FF3.17), 151-156 (2005)

    Google Scholar 

  46. J. Scheidtmann, A. Frantzen, G. Frenzer, W.F. Maier, A combinatorial technique for the search of solid state gas sensor materials. Meas. Sci. Tech. 16, 119–127 (2005)

    Article  Google Scholar 

  47. K. Takada, K. Fujimoto, T. Sasaki, M. Watanabe, Combinatorial electrode array for high-throughput evaluation of combinatorial library for electrode materials. Appl. Surf. Sci. 223, 210–213 (2004)

    Article  Google Scholar 

  48. C.H. Olk, Infrared screening of combinatorially prepared hydrogen sorbing metal alloys. Mater. Res. Soc. Symp. Proc. 801, 75–88 (2003)

    Article  Google Scholar 

  49. Y. Matsumoto, M. Murakami, T. Shono, T. Hasegawa, T. Fukumura, M. Kawasaki, P. Ahmet, T. Chikyow, S. Koshihara, H. Koinuma, Room-temperature ferromagnetism in transparent transition metal-doped titanium dioxide. Science 291, 854–6 (2001)

    Article  Google Scholar 

  50. R.B. van Dover, L.F. Schneemeyer, R.M. Fleming, Discovery of a useful thin film dielectric using a combinatorial-spread approach. Nature 392, 162–164 (1998)

    Article  Google Scholar 

  51. H. Chang, I. Takeuchi, X.-D. Xiang, A low loss composition region identified from a thin film composition spread of (Ba\(_{\text{1-x-y }}\)Sr\(_{\text{ x }}\)Ca\(_{\text{ y }})\)TiO\(_{3}\). Appl. Phys. Lett. 74, 1165–1167 (1999)

    Article  Google Scholar 

  52. G. Briceño, H. Chang, X. Sun, P.G. Schultz, X.-D. Xiang, A class of Cobalt Oxide magnetoresistance materials discovered with combinatorial synthesis. Science 270, 273–275 (1995)

    Article  Google Scholar 

  53. R.C. Pullar, Combinatorial bulk ceramic magnetoelectric composite libraries of strontium hexaferrite and barium titanate. ACS Comb. Sci. 14, 425–433 (2012)

    Article  Google Scholar 

  54. C. Gao, B. Hu, I. Takeuchi, K.-S. Chang, X.-D. Xiang, G. Wang, Quantitative scanning evanescent microwave microscopy and its applications in characterization of functional materials libraries. Meas. Sci. Technol. 16, 248–260 (2005)

    Article  Google Scholar 

  55. U. Simon, D. Sanders, J. Jockel, C. Hepel, T. Brinz, Design strategies for multielectrode arrays applicable for high-throughput impedance spectroscopy on Novel gas sensor materials. J. Comb. Chem. 4, 511–515 (2002)

    Article  Google Scholar 

  56. I. Takeuchi, W. Yang, K.-S. Chang, M. Aronova, R.D. Vispute, T. Venkatesan, L.A. Bendersky, Monolithic multi-channel UV detector arrays and continuous phase evolution in Mg\(_{\text{ x }}\)Zn\(_{\text{1-x }}\)O composition spreads. J. Appl. Phys. 94, 7336–7340 (2003)

    Article  Google Scholar 

  57. Y.K. Yoo, F. Duewer, H. Yang, D. Yi, J.-W. Li, X.-D. Xiang, Room-temperature electronic phase transitions in the continuous phase diagrams of perovskite manganites. Nature 406, 704–708 (2000)

    Article  Google Scholar 

  58. P.-A.W. Weiss, C. Thome, W.F. Maier, MS-express: data-extracting and -processing software for high-throughput experimentation with mass spectrometry. J. Comb. Chem. 6, 520-529 (2004)

    Google Scholar 

  59. J. Klein, S.A. Schunk, IR-SensographyTM—expanding the scope of contact-free sensing methods. Meas. Sci. Tech. 16, 221–228 (2005)

    Article  Google Scholar 

  60. U. Simon, D. Sanders, J. Jockel, T. Brinz, Setup for high-throughput impedance screening of gas-sensing materials. J. Comb. Chem. 7, 682–687 (2005)

    Article  Google Scholar 

  61. Combinatorial and artificial intelligence methods in materials science, in MRS Proceedings Volume 700 (2001), http://www.mrs.org/publications/epubs/proceedings/fall2001/s/

  62. M.Z. Pesenson, S.K. Suram, J.M. Gregoire, Statistical analysis and interpolation of compositional data in materials science. ACS Comb. Sci. 17, 130–136 (2015)

    Article  Google Scholar 

  63. A.G. Kusne, T. Gao, A. Mehta, L. Ke, M.C. Nguyen, K.-M. Ho, V. Antropov, C.-Z. Wang, M.J. Kramer, C. Long, I. Takeuchi, On-the-fly machine-learning for high-throughput experiments: search for rare-earth-free permanent magnets. Sci. Rep. 4, 6367 (2014)

    Google Scholar 

  64. G. Pilania, C. Wang, X. Jiang, S. Rajasekaran, R. Ramprasad, Accelerating materials property predictions using machine learning. Sci. Rep. 3, 2810 (2013)

    Article  Google Scholar 

  65. A. Yosipof, O.E. Nahum, A.Y. Anderson, H.-N. Barad, A. Zaban, H. Senderowitz, Data Mining and Machine Learning Tools for Combinatorial Material Science of All-Oxide Photovoltaic Cells. Mol. Inf. (2015). doi:10.1002/minf.201400174

    Google Scholar 

  66. R. Potyrailo, K. Rajan, K. Stoewe, I. Takeuchi, B. Chisholm, H. Lam, Combinatorial and high-throughput screening of materials libraries: review of state of the art. ACS Comb. Sci. 13, 579–633 (2011)

    Article  Google Scholar 

  67. K. Rajan, Materials informatics. Mater. Today 8(10), 38–45 (2005)

    Article  Google Scholar 

  68. C.J. Long, D. Bunker, X. Li, V.L. Karen, I. Takeuchi, Rapid identification of structural phases in combinatorial thin-film libraries using x-ray diffraction and non-negative matrix factorization. Rev. Sci. Instrum. 80, 103902 (2009)

    Article  Google Scholar 

  69. D. Kan, R. Suchoski, S. Fujino, I. Takeuchi, Combinatorial investigation of structural and ferroelectric properties of A- and B-site Co-doped BiFeO3 thin films. Integr. Ferroelectr. 111, 116–124 (2009)

    Article  Google Scholar 

Download references

Acknowledgments

The author would firstly like to thank the FCT (Fundação para a Ciência e a Tecnologia in Portugal), and the FCT Ciência 2008 program and grant SFRH/BPD/97115/2013 are acknowledged for funding the author during the writing and publication of this chapter. The author would also like to thank the publishers and copy write holders of all figures from previous sources used in this chapter, which have been referenced in the relevant figure caption.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Robert C. Pullar .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Pullar, R.C. (2016). Combinatorial Materials Science, and a Perspective on Challenges in Data Acquisition, Analysis and Presentation. In: Lookman, T., Alexander, F., Rajan, K. (eds) Information Science for Materials Discovery and Design. Springer Series in Materials Science, vol 225. Springer, Cham. https://doi.org/10.1007/978-3-319-23871-5_13

Download citation

Publish with us

Policies and ethics