Skip to main content

Hydrodynamic Processes at the Source of a Tsunami of Seismotectonic Origin: Incompressible Ocean

  • Chapter
  • First Online:
Physics of Tsunamis

Abstract

The process of tsunami generation by dynamic bottom deformations is treated as a hydrodynamical problem of an incompressible liquid. Two basic approximations are presented, which are used in describing gravitational waves on water—the theory of long waves and the potential theory. Within the framework of linear potential theory of an incompressible liquid in a basin of fixed depth, the general analytical solution is constructed for the two-dimensional (2D) and three-dimensional (3D) problems of tsunami generation by bottom deformations of small amplitudes. The solution of the 3D problem is constructed in both Cartesian and cylindrical coordinates. For a series of model bottom deformation laws (piston, membrane and running displacements, bottom oscillations and alternating-sign displacement) physical regularities are revealed that relate the amplitude, energy, and direction of tsunami wave emission to peculiarities of the bottom deformation at the source. In some cases, the theoretical regularities, obtained within potential theory, are compared with dependences following from the linear theory of long waves and, also, with the results of laboratory experiments. The practical problem of calculating the initial elevation on a water surface at a tsunami source is considered within the framework of the assumption of instantaneity of bottom deformation. Exact analytic solutions of this problem are presented for flat horizontal and inclined bottoms. Within the framework of the linear theory of long waves on account of the Earth’s rotation, investigation is performed of horizontal motions of the water layer accompanying tsunami generation by an earthquake in a homogeneous and stratified ocean. The displacement of water by coseismic bottom deformations is shown to serve as the cause of formation not only of tsunami waves, but also of long-lived “traces” of the tsunamigenic earthquake in the ocean—of potential and eddy residual hydrodynamical fields. The field of residual horizontal displacements of water particles is calculated and analyzed for the 2011 Tohoku-Oki earthquake.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Alasset, P.J., Hébert, H., Maouche, S., Calbini, V., Meghraoui, M.: The tsunami induced by the 2003 Zemmouri earthquake (Mw = 6.9, Algeria): modelling and results. Geophys. J. Int. 166(1), 213–226 (2006)

    Article  Google Scholar 

  • Basov, B.I., Kaistrenko, V.M., Levin, B.W., et al.: Some results of physical simulation of tsunami wave excitation and propagation. In: Tsunami Generation and Wave Runup on Shore, pp. 68–72. Radiosvyaz, Moscow (in Russian) (1984)

    Google Scholar 

  • Belokon’, V.I., Goi, A.A., Reznik, B.L., Smal’, N.A.: Tsunami excitation by a seismic wave packet subject to dispersion. Tsunami Res. (in Russian). Moscow (1), 28–36 (1986)

    Google Scholar 

  • Bobrovich, A.V.: Tsunami wave excitation by fissure propagating on the bottom. In: Theoretical Foundations, Methods and Technical Means of Tsunami Prognosis. Theses of Reports to Symposium (in Russian), pp. 36–37. Obninsk (1988)

    Google Scholar 

  • Bobrovich, A.V.: Generation of waves and vortices in the ocean by underwater earthquakes. Tsunami Res. (Mezhvedomstvennyi geofizicheskii komitet AN SSSR, Moscow, 1990), (4), 33–41 (1990) (in Russian)

    Google Scholar 

  • Bolshakova, A.V., Nosov, M.A.: Parameters of tsunami source versus earthquake magnitude. Pure Appl. Geophys. 2011, 168, 2023–2031 (2011)

    Google Scholar 

  • Bolshakova, A.V., Nosov, M.A., Kolesov, S.V.: The properties of co-seismic deformations of the ocean bottom as indicated by the slip-distribution data in tsunamigenic earthquake sources. Mosc. Univ. Phys. Bull. 70(1), 62–67 (2015)

    Article  Google Scholar 

  • Chubarov, L.B., Shokin, Y.I., Simonov, K.V.: Using numerical modelling to evaluate tsunami hazard near the Kuril island. Nat. Hazard. (5), 293–318 (1992)

    Google Scholar 

  • Crocker, R.I., Matthews, D.K., Emery, W.J., Baldwin, D.: Computing coastal ocean surface currents from infrared and ocean color satellite imagery. IEEE Trans. Geosci. Remote Sens. 45(2), 435–447 (2007)

    Article  Google Scholar 

  • Dotsenko, S.F.: Tsunami waves in a continuously stratified ocean. Tsunami Excit. Propag. Proc. (IO AN SSSR, Moscow, 1982), 40–52. (1982) (in Russian)

    Google Scholar 

  • Dotsenko, S.F.: Effects of earth rotation during tsunami generation by underwater earthquakes. Izv. Atmos. Ocean. Phys. 35(5), 641–647 (1999)

    Google Scholar 

  • Dotsenko, S.F., Sergeevsky, B.Yu., Cherkesov, L.V.: Spatial tsunami waves, caused by ocean surface displacements alternating in sign. Tsunami Res. (in Russian), Moscow (1), 7–14 (1986)

    Google Scholar 

  • Dotsenko, S.F., Sergeevsky, B.Yu.: Dispersion effects during directed tsunami wave generation and propagation. Tsunami Res. (in Russian), Moscow (5), 21–32 (1993)

    Google Scholar 

  • Dotsenko, S.F., Soloviev, S.L.: Mathematical modelling of tsunami excitation processes by slides of the ocean bottom. Tsunami Res. (in Russian), Moscow (4), 8–20 (1990a)

    Google Scholar 

  • Dotsenko, S.F., Soloviev, S.L.: Comparative analysis of tsunami excitation by piston and membrane bottom slides. In: Tsunami Res. (in Russian), (4), 21–27 (1990b)

    Google Scholar 

  • Dotsenko, S.F., Soloviev, S.L.: On the role of residual displacements of the ocean bottom in tsuanmi generation by submarine earthquakes. Oceanology (in Russian) 35(1), 25–31 (1995)

    Google Scholar 

  • Dotsenko, S.F.: The influence of ocean floor residual displacements on the efficiency of directed tsunami generation. Izv. Atmos. Ocean Phys. 31(4), 547–553 (1996)

    Google Scholar 

  • Dotsenko, S.F., Shokin, Yu.I.: Generation of vortices in a continuously stratified rotating liquid under displacements of the basin bottom. Vych. Tekhnol. (in Russian) (1), 13–22 (2001)

    Google Scholar 

  • Etaya, M., Nakano, R., Shimoda, H., Sakata, T.: Detection of ocean wave movements after the northern Sumatra earthquake using SPOT images. Proc. IGARSS, 1420–1423 (2005)

    Google Scholar 

  • Fine, I.V., Kulikov, E.A.: Computation of ocean surface displacements in the tsunami source, caused by instantaneous vertical bottom motions during an underwater earthquake. Vych. Tekhnol. 16(2), 111–118 (2011) (in Russian)

    Google Scholar 

  • Fujii, Y., Satake, K., Sakai, S., Shinohara, M., Kanazawa, T.: Tsunami source of the 2011 off the Pacific coast of Tohoku earthquake. Earth Planets Space 63, 815–820 (2011)

    Article  Google Scholar 

  • Ingel’, L.Kh.: The vortical trace of an earthquake in the sea. Dokl. Earth Sci. 362(7), 1036–1038 (1998)

    Google Scholar 

  • Iwasaki, S.: Experimental study of a tsunami generated by a horizontal motion of a sloping bottom. Bull. Earthq. Res. Inst. Univ. Tokyo 57, 239–262 (1982)

    Google Scholar 

  • Garder, O.I., Dolina, I.S., Pelinovsky, E.N., Poplavsky, A.A., Fridman, V.E.: Tsunami wave generation by gravitational lithodynamic processes. Tusnami Stud. (5), 50–60 (1993) (in Russian)

    Google Scholar 

  • Gill, A.E.: Atmosphere-Ocean Dynamics. Academic Press, New York (1982)

    Google Scholar 

  • Gisler, G.R.: Tsunami simulations. Annu. Rev. Fluid Mech. 40, 71–90 (2008)

    Article  Google Scholar 

  • Grilli, S.T., Ioualalen, M., Asavanant, J., Shi, F., Kirby, J.T., Watts, P.: Source constraints and model simulation of the 26 December 2004, Indian Ocean tsunami. J. Waterw. Port Coast. Ocean Eng. 133(6), 414–428 (2007)

    Article  Google Scholar 

  • Gusiakov, V.K.: Relationship of tsunami intensity to source earthquake magnitude as retrieved from historical data. Pure Appl. Geophys. 2011, 168, 2033–2041 (2011)

    Google Scholar 

  • Ji., C.: Rupture process of the 13 January 2007 Magnitude 8.1—KURIL Island Earthquake (Revised) (2007). http://earthquake.usgs.gov/earthquakes/eqinthenews/2007/us2007xmae/finite_fault.php

  • Hammack, J.L.: A note on tsunamis: their generation and propagation in an ocean of uniform depth. J. Fluid Mech. 60, 769–799 (1973)

    Article  Google Scholar 

  • Hammack, J.L.: Baroclinic generation, tsunami. J. Phys. Oceanogr. 10(9), 1455–1467 (1980)

    Google Scholar 

  • Hayes, G.: Updated Result of the 11 March 2011 Mw 9.0 Earthquake Offshore Honshu, Japan (2011). http://earthquake.usgs.gov/earthquakes/eqinthenews/2011/usc0001xgp/finite_fault.php

  • Horrillo, J., Kowalik, Z., Shigihara, Y.: Wave dispersion study in the Indian Ocean tsunami of 26 December 2004. Sci. Tsunami Hazards 25(1), 42–63 (2006)

    Google Scholar 

  • Kajiura, K.: The leading wave of a tsunami. Bull. Earthq. Res. Inst. 41(3), 535–571 (1963)

    Google Scholar 

  • Kajiura, K.: Tsunami source, energy and directivity of wave radiation. Bull. Earthq. Res. Inst. 48(5), 835–869 (1970)

    Google Scholar 

  • Kato, K., Tsuji, Y.: Tsunami of the Sumba earthquake of 19 August 1977. J. Nat. Disaster Sci. 17(2), 87–100 (1995)

    Google Scholar 

  • Kostitsyna, O.V., Nosov, M.A., Shelkovnikov, N.K.: A study of nonlinearity in the process of tsunami generation by sea floor motion. Mosc. Univ. Phys. Bull. 47(4), 83–86 (1992)

    Google Scholar 

  • Kowalik, Z., Knight, W., Logan, T., Whitmore, P.: Numerical modelling of the global tsunami: Indonesian tsunami of 26 December 2004. Sci. Tsunami Hazard 23(1), 40–56 (2005)

    Google Scholar 

  • Kulikov, E.A., Rabinovich, A.B., Fine, I.V., Bornhold, B.D., Thomson, R.E.: Tsunami generation by slides on the Pacific coast of North America and the role of tides (in Russian). Oceanology 38(3), 361–367 (1998)

    Google Scholar 

  • Lamb, H.: Hydrodynamics. Cambridge University Press, Cambridge (1932)

    Google Scholar 

  • Landau, L.D., Lifshitz, E.M.: Fluid Mechanics, 2nd English edn. Pergamon Press, Oxford (1987)

    Google Scholar 

  • Lebedev, A.N., Sebekin, B.I.: Directed tsunami wave generation in the coastal zone (in Russian). Izv. AN SSSR, FAO 18(4), 399–417 (1982)

    Google Scholar 

  • Levin, B.W.: Review of works on experimental modelling of the tsunami excitation process (in Russian). In: Methods for Calculating Tsunami Rise and Propagation, pp. 125–139. Nauka, Moscow (1978)

    Google Scholar 

  • Levin, B.V., Nosov, M.A., Pavlov, V.P., Rykunov, L.N.: Cooling of the ocean surface as a result of seaquakes. Dokl. Earth Sci. 358(1), 132–135 (1998)

    Google Scholar 

  • Lighthill, J.: Waves in Fluids, p. 504. Cambridge University Press, Cambridge (1978)

    Google Scholar 

  • Lobkovsky, L.I., Baranov, B.V.: On tsunami excitation in subduction zones of lithospheric plates (in Russian). In: Processes of Tsunami Excitation and Propagation. pp. 7–17. Publishing Department, RAS (1982)

    Google Scholar 

  • Marchuk, An.G., Chubarov, L.B., Shokin, Yu.I.: Numerical Simulation of Tsunami Waves (in Russian). Nauka, Siberian Branch. Novosibirsk (1983)

    Google Scholar 

  • Marchuk, An.G., Titov, V.V.: Influence of the source shape on tsunami wave formation (in Russian). Tsunami Research, (5), 7–21 (1993)

    Google Scholar 

  • Mikada, H., Mitsuzawa, K., Matsumoto, H., Watanabe, T., Morita, S., Otsuka, R., Sugioka, H., Baba, T., Araki, E., Suyehiro, K.: New discoveries in dynamics of an M8 earthquake—phenomena and their implications from the 2003 Tokachi-oki earthquake using a long term monitoring cabled observatory. Tectonophysics 426, 95–105 (2006)

    Article  Google Scholar 

  • Mirchina, N.P., Pelinovsky, E.N.: Dispersive amplification of tsunami waves (in Russian). Oceanology 27(1), 35–40 (1987)

    Google Scholar 

  • Murty, T.S.: Seismic sea waves—tsunamis. Bull. Fish. Res. Board Canada Ottawa 198 (1977)

    Google Scholar 

  • Myers, E.P., Baptista, A.M.: Finite element modeling of the 12 July 1993 Hokkaido Nansei-Oki tsunami. Pure Appl. Geophys. 144(3/4), 769–802 (1995)

    Article  Google Scholar 

  • Nagai, T.: Introduction of Japanese coastal wave monitoring network. In: Joint Conference Proceedings, 7th International Conference on Urban Earthquake Engineering (7CUEE) and 5th International Conference on Earthquake Engineering (5ICEE), pp. 1649–1653, 3–5 March, Tokyo Institute of Technology, Tokyo, Japan (2010)

    Google Scholar 

  • Nikiforov, A.f., Uvarov, V.B.: Special Functions of Mathematical Physics (in Russian). Nauka, Moscow (1984)

    Google Scholar 

  • Nosov, M.A.: Generation of tsunami by oscillations of a sea floor section. Mosc. Univ. Phys. Bull. 47(1), 110–112 (1992)

    Google Scholar 

  • Nosov, M.A., Mironyuk, S.V., Shelkovnikov, N.K.: Directivity of dispersive tsunami radiation and specific features of sea floor motion in the focus area. Mos. Univ. Phys. Bull. C/c of Vestnik-moskovskii Universitet Fizika I Astronomiia 52, 99–102 (1997)

    Google Scholar 

  • Nosov, M.A.: On the directivity of dispersive tsunami waves excited by piston-type and traveling-wave sea-floor motion. Volcanol. Seismol. 19, 837–844 (1998a)

    Google Scholar 

  • Nosov, M.A. Ocean surface temperature anomalies from underwater earthquakes. Volcanol. Seismol. 19(3), 371–375 (1998b)

    Google Scholar 

  • Nosov, M.A.: Tsunami waves of seismic origin: the modern state of knowledge. Izv. Atmos. Ocean. Phys. 50(5), 474–484 (2014)

    Google Scholar 

  • Nosov, M.A., Mironyuk, S.V., Shelkovnikov, N.K.: Bottom slides of alternating signs and leading tsunami wave (in Russian). In: Collection “Interaction in the Lithosphere–hydrosphere–atmosphere System”, vol. 2, pp. 193–200. Publishing Department of MSU Physics Faculty, Moscow (1999)

    Google Scholar 

  • Nosov, M.A., Kolesov, S.V., Levin, B.W.: Contribution of horizontal deformation of the seafloor into tsunami generation near the coast of Japan on 11 March 2011. Dokl. Earth Sci. 441(1), 1537–1542. SP MAIK Nauka/Interperiodica (2011, November)

    Google Scholar 

  • Nosov, M.A., Bolshakova, A.V., Kolesov, S.V.: Displaced water volume, potential energy of initial elevation, and tsunami intensity: analysis of recent tsunami events. Pure Appl. Geophys. 171(12), 3515–3525 (2014a)

    Google Scholar 

  • Nosov, M.A., Kolesov, S.V.: Method of specification of the initial conditions for numerical tsunami modeling. Mosc. Univ. Phys. Bull. 64(2), 208–213 (2009)

    Article  Google Scholar 

  • Nosov, M.A., Kolesov, S.V.: Optimal initial conditions for simulation of seismotectonic tsunamis. Pure Appl. Geophys. 168(6–7), 1223–1237 (2011)

    Article  Google Scholar 

  • Nosov, M.A., Nurislamova, G.N., Moshenceva, A.V., Kolesov, S.V.: Residual hydrodynamic fields after tsunami generation by an earthquake. Izv. Atmos. Ocean. Phys. 50(5), 520–531 (2014b)

    Google Scholar 

  • Nosov, M.A., Moshenceva, A.V., Levin, B.W.: Residual hydrodynamic fields near a tsunami source. Dokl. Earth Sci. 438(2), 853–857 (2011)

    Google Scholar 

  • Nosov, M.A., Nurislamova, G.N.: The potential and vortex traces of a tsunamigenic earthquake in the ocean. Mosc. Univ. Phys. Bull. 67(5) 457–461 (2012)

    Google Scholar 

  • Nosov, M.A., Nurislamova, G.N.: Traces of a tsunamigenic earthquake in a rotating stratified ocean. Mosc. Univ. Phys. Bull. 68(6), 490–496 (2013)

    Google Scholar 

  • Nosov, M.A., Sementsov, K.A.: Calculation of the initial elevation at the tsunami source using analytical solutions. Izv. Atmos. Ocean. Phys. 50(5), 539–546 (2014)

    Article  Google Scholar 

  • Nosov, M.A., Shelkovnikov, N.K.: Method for measuring submillimeter waves on water surface. Mosc. Univ. Phys. Bull. 46(3), 106–108 (1991)

    Google Scholar 

  • Nosov, M.A., Shelkovnikov, N.K.: Generation of surface waves in a fluid layer by periodic motions of the bottom. Izv. Atmos. Ocean. Phys. 28(10–11), 833–834 (1992)

    Google Scholar 

  • Nosov, M.A., Shelkovnikov, N.K.: Tsunami generation by traveling sea-floor shoves. Mosc. Univ. Phys. Bull. 50(4), 88–92 (1995)

    Google Scholar 

  • Nosov, M.A., Shelkovnikov, N.K.: The excitation of dispersive tsunami waves by piston and membrane floor motions. Izv. Atmos. Ocean. Phys. 33(1), 133–139 (1997)

    Google Scholar 

  • Novikova, L.E., Ostrovsky, L.A.: On the excitation of tsunami waves by a running slide of the ocean bottom. In: Methods for Calculating Tsunami Arisal and Propagation (in Russian), pp. 88–99. Nauka, Moscow (1978)

    Google Scholar 

  • Okada, Y.: Surface deformation due to shear and tensile faults in a half-space. Bull. Seismol. Soc. Am. 75(4), 1135–1154 (1985)

    Google Scholar 

  • Okal, E.A., Mac Ayeal, D.R.: Seismic recording on drifting icebergs: catching seismic waves, tsunamis and storms from Sumatra and elsewhere. Seismol. Res. Letts. 77, 659–671 (2006)

    Google Scholar 

  • Pelinovsky, E., Talipova, T., Kurkin, A., Kharif, C.: Nonlinear mechanism of tsunami wave generation by atmospheric disturbances. Nat. Hazards Earth Syst. Sci. 1, 243–250 (2001)

    Article  Google Scholar 

  • Pelinovsky, E.N.: Hydrodynamics of Tsunami Waves (in Russian). Institute of Applied Physics. RAS, Nizhnii Novgorod (1996)

    Google Scholar 

  • Polyanin, A.D.: Handbook of Linear Partial Differential Equations for Engineers and Scientists. Chapman & Hall/CRC Press, Boca Raton (2002)

    Google Scholar 

  • Popinet, S.: Adaptive modelling of long-distance wave propagation and fine-scale flooding during the Tohoku tsunami. Nat. Hazards Earth Syst. Sci. 12, 1213–1227 (2012)

    Google Scholar 

  • Poplavskii, A.A., Poplavskaya, L.N., Spirin, A.I., Permikin, Yu, Yu., Nagornykh, T.V.: Improvements on the magnitude-geographic criterion of tsunami hazard. J. Volkanol. Seismol. 3(1), 59–67 (2009)

    Google Scholar 

  • Rabinovich, A.B., Lobkovsky, L.I., Fine, I.V., Thomson, R.E., Ivelskaya, T.N., Kulikov, E.A.: Near-source observations and modeling of the Kuril Islands tsunamis of 15 November 2006 and 13 January 2007. In: Advances in Geosciences, vol. 14, pp. 105–116 (2008)

    Google Scholar 

  • Rivera, P.C.: Modeling the Asian tsunami evolution and propagation with a new generation mechanism and a non-linear dispersive wave model. Sci. Tsunami Hazards 25(1), 18–33 (2006)

    Google Scholar 

  • Segerlind, L.J.: Applied Finite Element Analysis. Wiley, New York (1976)

    Google Scholar 

  • Saito, T., Furumura, T.: Three-dimensional tsunami generation simulation due to sea-bottom deformation and its interpretation based on the linear theory. Geophys. J. Int. 178(2), 877–888 (2009)

    Article  Google Scholar 

  • Satake, K.: Linear and nonlinear computations of the 1992 Nicaragua earthquake tsunami. PAGEOPH 144(3/4), 455–470 (1995)

    Google Scholar 

  • Satake, K., Imamura, F.: Tsunamis: seismological and disaster prevention studies. J. Phys. Earth 43(3), 259–277 (1995)

    Google Scholar 

  • Sretensky, L.N.: Theory of Wave Motions of Liquids (in Russian). Nauka, Moscow (1977)

    Google Scholar 

  • Suleimani, E., Hansen, R., Kowalik, Z.: Inundation modeling of the 1964 tsunami in Kodiak Island, Alaska. In: Yalciner, A.C., Pelinovsky, E.N., Okal, E., Synolakis, C.E. (eds.) Submarine Landslides and Tsunamis, vol. 21, pp. 191–201. Kluwer Academic Publishers (2003)

    Google Scholar 

  • Sveshnikov, A.G., Tikhonov, A.N.: Theory of Functions of a Complex Variable (in Russian). Nauka, Fizmatlit, Moscow (1999)

    Google Scholar 

  • Takahasi, R.: A model experiment on the mechanism of seismic sea wave generation. Part 1. Bull. Earthq. Res. Inst. 12, 152–178 (1934)

    Google Scholar 

  • Takahasi, R.: On some model experiment on tsunami generation. Int. Union Geodesy Geophys. Monogr. (24), 235–248 (1963)

    Google Scholar 

  • Tanioka, Y., Satake, K.: Tsunami generation by horizontal displacement of ocean bottom. Geophys. Res. Lett. 23(8), 861–864 (1996a)

    Google Scholar 

  • Tanioka, Y., Satake, K.: Fault parameters of the 1896 Sanriku tsunami earthquake estimated from tsunami numerical modeling. Geophys. Res. Lett. 23(13), 1549–1552 (1996b)

    Google Scholar 

  • Tanioka, Y., Seno, T.: Sediment effect on tsunami generation of the 1896 Sanriku tsunami earthquake. Geophys. Res. Lett. 28(17), 3389–3392 (2001)

    Google Scholar 

  • Tinti, S., Bortolucci, E., Armigliato, A.: Numerical simulation of the landslide-induced tsunami of 1988 in Vulcano island, Italy. Bull. Volcanol. 61, 121–137 (1999)

    Google Scholar 

  • Titov, V.V., Mofjeld, H.O., Gonzalez, F.I., Newman, J.C.: Offshore forecasting of Alaska-Aleutian subduction zone tsunamis in Hawaii. NOAA Technical Memorandum ERL PMEL-114 (1999)

    Google Scholar 

  • Titov, V.V., Gonzalez, F.I., Mofjeld, H.O., Venturato, A.J.: NOAA time seattle tsunami mapping project: procedures, data sources, and products. NOAA Technical Memorandum OAR PMEL-124, 21p (2003)

    Google Scholar 

  • Titov, V.V., Gonzalez, F.I., Bernard, E.N., et al.: Real-time tsunami forecasting: challenges and solutions. Nat. Hazards 35(1), 41–58 (2005). (U.S. National Tsunami Hazard Mitigation Program)

    Google Scholar 

  • UNESCO/IOC.: Operational Users Guide for the Pacific Tsunami Warning and Mitigation System (PTWS). IOC Technical Series 87, 2nd edn. (2009)

    Google Scholar 

  • Van Dorn, W.G.: Source mechanism of the tsunami of March 28, 1964, in Alaska. In: Proceedings of the 9th Conference on Coastal Engineering, Lisbon, pp. 166–190 (1964)

    Google Scholar 

  • Vasilieva, G.V.: On wave excitation in shallow water. In: Tsunami Wave Propagation and Runup on Shore. (in Russian), pp. 67–69. Nauka, Moscow (1981)

    Google Scholar 

  • Voight, S.S.: Tsunami waves. Tsunami Res. (2), 8–26 (1987). (in Russian)

    Google Scholar 

  • Voight, S.S., Lebedev, A.N., Sebekin, B.I.: Certain tsunami wave peculiarities, related to characteristics of the perturbation source. In: Tsunami Theory and Effective Prognosis (in Russian), pp. 5–11. Nauka, Moscow (1980)

    Google Scholar 

  • Voight, S.S., Lebedev, A.N., Sebekin, B.I.: On the formation of a directed tsunami wave at the perturbation source. Izv. AN SSSR, FAO (in Russian) 17(3), 296–304 (1981)

    Google Scholar 

  • Voight, S.S., Lebedev, A.N., Sebekin, B.I.: On the generation of a directed tsunami wave by a horizontal bottom displacement. In: Processes of Tsunami Excitation and Propagation (in Russian), pp.18–23. IO RAN, Moscow (1982)

    Google Scholar 

  • Voit, S.S., Lebedev, A.N., Sebekin, B.I.: Earth’s rotation effect on energy characteristics of tsunami waves. Tsunami Research (Mezhvedomstvennyi geofizicheskii komitet AN SSSR, Moscow, 1986), (1), 15–20 (1986). (in Russian)

    Google Scholar 

  • Watts, P., Grilli, S.T., Imamura, F.: Coupling of tsunami generation and propagation codes. ITS Proc. Session 7(7–13), 811–823 (2001)

    Google Scholar 

  • Zaitsev, A.I., Kurkin, A.A., Levin, B.W., et al.: Numerical simulation of catastrophic tsunami propagation in the Indian Ocean (26 December 2004). Dokl. Earth Sci. 402(4), 614 (2005)

    Google Scholar 

  • Zaytsev, A.I., Chernov, A.G., Yalciner, A.C. et al.: MANUAL Tsunami Simulation/Visualization Code NAMI DANCE versions 4.9 (February 2010)

    Google Scholar 

  • Zyryanov, V.N.: Topographic Vortices in the Dynamics of Sea Currents. IVP RAN, Moscow (1995) (in Russian)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Boris W. Levin .

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Levin, B.W., Nosov, M.A. (2016). Hydrodynamic Processes at the Source of a Tsunami of Seismotectonic Origin: Incompressible Ocean. In: Physics of Tsunamis. Springer, Cham. https://doi.org/10.1007/978-3-319-24037-4_3

Download citation

Publish with us

Policies and ethics