Skip to main content

Probabilistic Analysis of Online Stacking Algorithms

  • Conference paper
  • First Online:
Computational Logistics (ICCL 2015)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 9335))

Included in the following conference series:

Abstract

Consider the situation where some items arrive to a storage location where they are temporarily stored in bounded capacity LIFO stacks until their departure. We consider the problem of deciding where to put an arriving item with the objective of using as few stacks as possible. The decision has to be made as soon as an item arrives and we assume that we only have information on the departure times for the arriving item and the items currently at the storage area. We are only allowed to put an item on top of another item if the item below departs at a later time. We assume that the numbers defining the storage time intervals are picked independently and uniformly at random from the interval [0, 1]. We present a simple polynomial time online algorithm for the problem and prove the following: For any positive real numbers \(\epsilon _1, \epsilon _2 > 0\) there exists an \(N > 0\) such that the algorithm uses no more than \((1+\epsilon _1)OPT\) stacks with probability at least \(1-\epsilon _2\) if the number of items is at least N where OPT denotes the optimal number of stacks. The result even holds if the stack capacity is \(o(\sqrt{n})\) where n is the number of items.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Aldous, D., Diaconis, P.: Longest increasing subsequences: From patience sorting to the baik-deift-johansson theorem. Bull. Amer. Math. Soc. 36, 413–432 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  2. Avriel, M., Penn, M., Shpirer, N.: Container ship stowage problem: complexity and connection to the coloring of circle graphs. Discrete Applied Mathematics 103(1–3), 271–279 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  3. Borgman, B., van Asperen, E., Dekker, R.: Online rules for container stacking. OR Spectrum 32(3), 687–716 (2010)

    Article  MATH  Google Scholar 

  4. Cornelsen, S., Di Stefano, G.: Track assignment. Journal of Discrete Algorithms 5(2), 250–261 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  5. Demange, M., Di Stefano, G., Leroy-Beaulieu, B.: On the online track assignment problem. Discrete Applied Mathematics 160(7–8), 1072–1093 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  6. Jansen, K.: The mutual exclusion scheduling problem for permutation and comparability graphs. Information and Computation 180(2), 71–81 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  7. Kobayashi, H., Mark, B.L., Turin, W.: Probability, Random Processes, and Statistical Analysis: Applications to Communications, Signal Processing, Queueing Theory and Mathematical Finance. Cambridge University Press (2012)

    Google Scholar 

  8. König, F.G., Lübbecke, M., Möhring, R.H., Schäfer, G., Spenke, I.: Solutions to real-world instances of PSPACE-complete stacking. In: Arge, L., Hoffmann, M., Welzl, E. (eds.) ESA 2007. LNCS, vol. 4698, pp. 729–740. Springer, Heidelberg (2007)

    Chapter  Google Scholar 

  9. Pacino, D., Jensen, R.M.: Fast Generation of Container Vessel Stowage Plans: using mixed integer programming for optimal master planning and constraint based local search for slot planning. PhD thesis, IT University of Copenhagen (2012)

    Google Scholar 

  10. Pilpel, S.: Descending subsequences of random permutations. Journal of Combinatorial Theory, Series A 53(1), 96–116 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  11. Rei, R.J., Pedroso, J.P.: Tree search for the stacking problem. Annals OR 203(1), 371–388 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  12. Scheinerman, E.R.: Random interval graphs. Combinatorica 8(4), 357–371 (1988)

    Article  MathSciNet  MATH  Google Scholar 

  13. Tierney, K., Pacino, D., Jensen, R.M.: On the complexity of container stowage planning problems. Discrete Applied Mathematics 169, 225–230 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  14. Wang, N., Zhang, Z., Lim, A.: The stowage stack minimization problem with zero rehandle constraint. In: Ali, M., Pan, J.-S., Chen, S.-M., Horng, M.-F. (eds.) IEA/AIE 2014, Part II. LNCS, vol. 8482, pp. 456–465. Springer, Heidelberg (2014)

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Martin Olsen .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this paper

Cite this paper

Olsen, M., Gross, A. (2015). Probabilistic Analysis of Online Stacking Algorithms. In: Corman, F., Voß, S., Negenborn, R. (eds) Computational Logistics. ICCL 2015. Lecture Notes in Computer Science(), vol 9335. Springer, Cham. https://doi.org/10.1007/978-3-319-24264-4_25

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-24264-4_25

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-24263-7

  • Online ISBN: 978-3-319-24264-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics