Skip to main content

The Role of Computational Intelligence in Experimental Design: A Literature Review

  • Chapter
  • First Online:
Intelligent Decision Making in Quality Management

Part of the book series: Intelligent Systems Reference Library ((ISRL,volume 97))

Abstract

Experimental design (DOE) is a well-developed methodology that has been frequently adopted for different purposes in a wide range of fields such as control theory, optimization, and intelligent decision making. The main objective of DOE is to best select experiments to estimate a set of parameters while consuming as little resources as possible. The enrichment of literature on computational intelligence has supported DOE to extend its sphere of influence in the past two decades. Specifically, the most significant progress has been observed in the area of optimal experimentation, which deals with the calculation of the best scheme of measurements so that the information provided by the data collected is maximized. Nevertheless, determining the design that captures the true relationship between the response and control variables is the most fundamental objective. When deciding whether a design is better (or worse) than another one, usually a criterion is utilized to make an objective distinction. There is a wide range of optimality criteria available in the literature that has been proposed to solve theoretical or practical problems stemming from the challenging nature of optimal experimentation. This study focuses on the most recent applications of DOE related to heuristic optimization, fuzzy approach, and artificial intelligence with a special emphasis on the optimal experimental design and optimality criteria.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Alam, F.M., McNaught, K.R., Ringrose, T.J.: A comparison of experimental designs in the development of a neural network simulation metamodel. Simul. Model. Pract. Theory 12, 559–578 (2004)

    Article  Google Scholar 

  • Alonso, M.C., Bousbaine, A., Llovet, J., Malpica, J.A.: Obtaining industrial experimental designs using a heuristic technique. Expert Syst. Appl. 38, 10094–10098 (2011)

    Article  Google Scholar 

  • Anderson-Cook, C.M., Borror, C.M., Montgomery, D.C.: Response surface design evaluation and comparison. J. Stat. Plann. Infer. 139, 629–641 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  • Balestrassi, P.P., Popova, E., Paiva, A.P., Lima, J.W.M.: Design of experiments on neural network’s training for nonlinear time series forecasting. Neurocomputing 72, 1160–1178 (2009)

    Article  Google Scholar 

  • Balsa-Canto, E., Rodriguez-Fernandez, M., Banga, J.R.: Optimal design of dynamic experiments for improved estimation of kinetic parameters of thermal degradation. J. Food Eng. 82, 178–188 (2007)

    Article  Google Scholar 

  • Basu, S., Dan, P.K., Thakur, A.: Experimental design in soap manufacturing for optimization of fuzzified process capability index. J. Manufact. Syst. 33, 323–334 (2014)

    Article  Google Scholar 

  • Bates, S.J., Sienz, J., Langley, D.S.: Formulation of the Audze–Eglais Uniform latin hypercube design of experiments. Adv. Eng. Softw. 34, 493–506 (2003)

    Google Scholar 

  • Bonte, M.H.A., Fourment, L., Do, T., van den Boogaard, A.H., Huétink, J.: Optimization of forging processes using finite element simulations: a comparison of sequential approximate optimization and other algorithms. Struct. Multidisc Optim. 42, 797–810 (2010)

    Article  Google Scholar 

  • Box, G.E.P., Draper, N.R.: Evolutionary Operation: A Statistical Method for Process Management. Wiley, Toronto (1969)

    MATH  Google Scholar 

  • Breban, S., Saudemont, C., Vieillard, S., Robyns, B.: Experimental design and genetic algorithm optimization of a fuzzy-logic supervisor for embedded electrical power systems. Math. Comput. Simul. 91, 91–107 (2013)

    Article  MathSciNet  Google Scholar 

  • Bruwer, M.J., MacGregor, J.F.: Robust multi-variable identification: Optimal experimental design with constraints. J. Process Control 16, 581–600 (2006)

    Article  Google Scholar 

  • Chang, H.H.: A data mining approach to dynamic multiple responses in Taguchi experimental design. Expert Syst. Appl. 35, 1095–1103 (2008)

    Article  Google Scholar 

  • Chang, Y.P., Low, C.: Optimization of a passive harmonic filter based on the neural-genetic algorithm with fuzzy logic for a steel manufacturing plant. Expert Syst. Appl. 34, 2059–2070 (2008)

    Article  Google Scholar 

  • Chen, C.L., Lin, R.H., Zhang, J.: Genetic algorithms for MD-optimal follow-up designs. Comput. Oper. Res. 30, 233–252 (2003)

    Article  MATH  Google Scholar 

  • Chi, G., Hua, S., Yang, Y., Chen, T.: Response surface methodology with prediction uncertainty: a multi–objective optimisation approach. Chem. Eng. Res. Des. 90, 1235–1244 (2012)

    Article  Google Scholar 

  • Coles, D., Curtis, A., Coles, D., Curtis, A.: A free lunch in linearized experimental design? Comput. Geosci. 37, 1026–1034 (2011)

    Article  Google Scholar 

  • Das, A.: An Introduction to optimality criteria and some results on optimal block design. In: Design Workshop Lecture Notes, pp. 1–21. ISI, Kolkata 25–29 Nov 2002

    Google Scholar 

  • Fang, K.T., Tang, Y., Yin, J.: Lower bounds of various criteria in experimental designs. J. Stat. Plann Infer 138, 184–195 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  • Fraleigh, L.M., Guay, M., Forbes, J.F.: Sensor selection for model–based real–time optimization: relating design of experiments and design cost. J. Process Control 13, 667–678 (2003)

    Article  Google Scholar 

  • Fuerle, F., Sienz, J.: Formulation of the Audze–Eglais uniform Latin hypercube design of experiments for constrained design spaces. Adv. Eng. Soft. 42, 680–689 (2011)

    Google Scholar 

  • Goujot, D., Meyer, X., Courtois, F.: Identification of a rice drying model with an improved sequential optimal design of experiments. J. Process Control 22, 95–107 (2012)

    Article  Google Scholar 

  • Hametner, C., Stadlbauer, M., Deregnaucourt, M., Jakubek, S., Winsel, T.: Optimal experiment design based on local model networks and multi–layerperceptron networks. Eng. Appl. Artif. Intell. 26, 251–261 (2013)

    Article  Google Scholar 

  • Harman, R., Filová, L.: Computing efficient exact designs of experiments using integer quadratic programming. Comput. Stat. Data Anal. 71, 1159–1167 (2014)

    Article  MathSciNet  Google Scholar 

  • Harman, R., Jurík, T.: Computing c–optimal experimental designs using the simplex method of linear programming. Comput. Stat. Data Anal. 53, 247–254 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  • Imhof, L.A., Song, D., Wong, W.K.: Optimal design of experiments with anticipated pattern of missing observations. J. Theor. Biol. 228, 251–260 (2004)

    Article  MathSciNet  Google Scholar 

  • Jones, D.R., Schonlau, M., Welch, W.J.: Efficient global optimization of expensive black-box functions. J. Glob. Optim. 13, 455–492 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  • Joutard, C.: Applications of large deviations to optimal experimental designs. Stat. Probab. Lett. 77, 231–238 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  • Kleijnen, J.P.C., den Hertog, D., Angün, E.: Response surface methodology’s steepest ascent and step size revisited. Eur. J. Oper. Res. 159, 121–131 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  • Koung, C.W., MacGregor, J.F.: Identification for robust multivariable control: the design of experiments. Automatica 30(10), 1541–1554 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  • Lejeune, M.A.: Heuristic optimization of experimental designs. Eur. J. Oper. Res. 147, 484–498 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  • Loeza-Serrano, S., Donev, A.N.: Construction of experimental designs for estimating variance components. Comput. Stat. Data Anal. 71, 1168–1177 (2014)

    Article  MathSciNet  Google Scholar 

  • Lopez-Fidalgo, J., Trandafir, C., Tommasi, C.H.: An optimal experimental design criterion for discriminating between non–normal models. J. Roy. Stat. Soc. B 69, 231–242 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  • Lotfi, A., Howarth, M.: Experimental design with fuzzy levels. J. Intell. Manuf. 8, 525–532 (1997)

    Article  Google Scholar 

  • Lundstedt, T., Seifert, E., Abramo, L., Thelin, B., Nystrom, A., Pettersen, J., Bergman, R.: Experimental design and optimization. Chemometr. Intell. Lab. Syst. 42, 3–40 (1998)

    Article  Google Scholar 

  • Mandal, S., Torsney, B.: Construction of optimal designs using a clustering approach. J. Stat. Plann. Infer. 136, 1120–1134 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  • Myers, R.H., Montgomery, D.C., Vining, G.G., Borror, C.M., Kowalski, S.M.: Response surface methodology: A retrospective and literature survey, J Qual Technol, 36(1), 53–77 (2004)

    Google Scholar 

  • Myunga, J.I., Cavagnaro, D.R., Pitt, M.A.: A tutorial on adaptive design optimization. J. Math. Psychol. 57(3–4), 53–67 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  • Otsu, T.: Optimal experimental design criterion for discriminating semiparametric models. J. Stat. Plann. Infer. 138, 4141–4150 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  • Patana, M., Bogacka, B.: Optimum experimental designs for dynamic systems in the presence of correlated errors. Comput. Stat. Data Anal. 51, 5644–5661 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  • Plumb, A.P., Rowe, R.C., York, P., Doherty, C.: The effect of experimental design on the modeling of a tablet coating formulation using artificial neural networks. Eur. J. Pharm. Sci. 16, 281–288 (2002)

    Article  Google Scholar 

  • Pronzato, L.: Optimal experimental design and some related control problems. Automatica 44, 303–325 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  • Pukelsheim, F.: Optimal Design of Experiments. Wiley, New York (1993)

    MATH  Google Scholar 

  • Richard, B., Cremona, C., Adelaide, L.: A response surface method based on support vector machines trainedwith an adaptive experimental design. Struct. Saf. 39, 14–21 (2012)

    Article  Google Scholar 

  • Rollins, D.K., Bhandari, N.: Constrained MIMO dynamic discrete-time modeling exploiting optimal experimental design. J. Process Control 14, 671–683 (2004)

    Article  Google Scholar 

  • Sagnol, G.: Computing optimal designs of multiresponse experiments reduces to second–order cone programming. J. Stat. Plann. Infer. 141, 1684–1708 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  • Salmasnia, A., Kazemzadeh, B., Tabrizi, M.M.: A novel approach for optimization of correlated multiple responses based ondesirability function and fuzzy logics. Neurocomputing 91, 56–66 (2012)

    Article  Google Scholar 

  • Sánchez, M.S., Sarabia, L.A., Ortiz, M.C.: On the construction of experimental designs for a given task by jointly optimizing several quality criteria: Pareto-optimal experimental designs. Analytica Chimica Acta 754, 39–46 (2012)

    Article  Google Scholar 

  • Siomina, I., Ahlinder, S.: Lean optimization using supersaturated experimental design. Appl. Numer. Math. 58, 1–15 (2008)

    Article  MATH  Google Scholar 

  • Tansel, I.N., Gülmez, S., Demetgul, M., Aykut, S.: Taguchi Method-GONNS integration: Complete procedure covering from experimental design to complex optimization. Expert Syst. Appl. 38, 4780–4789 (2011)

    Article  Google Scholar 

  • Torczon, V., Trosset M.W.: Using approximations to accelerate industrial design optimization. In: Grandhi, R.V., Canfield, R.A. (eds.), Proceedings of the 7th AAIA/NASA/USAF/ISSMO Symposium on Multidisciplinary Analysis and Optimization: A Collection of Technical Papers, Part 2, pp. 738–748. American Institute of Aeronautics and Astronautics, Virginia, USA (1998)

    Google Scholar 

  • Ucinski, D., Bogacka, B.: A constrained optimum experimental design problem for model discrimination with a continuously varying factor. J. Stat. Plan Infer. 137, 4048–4065 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  • Wit, E., Nobile, A., Khanin, R.: Near-optimal designs for dual channel microarray studies. Appl. Stat. 54, 817–830 (2005)

    MathSciNet  MATH  Google Scholar 

  • Zanchettin, C., Minku, L.L., Ludermir, T.B.: Design of experiments in neuro-fuzzy systems. Int. J. Comput. Intell. Appl. 9(2), 137–152 (2010)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Erkan Işıklı .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Işıklı, E., Yanık, S. (2016). The Role of Computational Intelligence in Experimental Design: A Literature Review. In: Kahraman, C., Yanik, S. (eds) Intelligent Decision Making in Quality Management. Intelligent Systems Reference Library, vol 97. Springer, Cham. https://doi.org/10.1007/978-3-319-24499-0_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-24499-0_8

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-24497-6

  • Online ISBN: 978-3-319-24499-0

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics