Skip to main content

Multi-Modal Visualization of Probabilistic Tractography

  • Conference paper
  • First Online:
Visualization in Medicine and Life Sciences III

Part of the book series: Mathematics and Visualization ((MATHVISUAL))

Abstract

Neuroscientists use visualizations of diffusion data to analyze neural tracts of the brain. More specifically, probabilistic tractography algorithms are a group of methods that reconstruct tract information in diffusion data and need proper visualization. One problem neuroscientists are facing with probabilistic data is putting this information into context. Neuroscience experts already successfully utilized several techniques together with structural MRI to detect neural tracts in the living human brain which were previously only known from tracer studies in macaque monkeys. Whereas the combination with structural MRI, i.e., T1 and T2 images, has been important for these studies, new challenges ask for an integration of other imaging modalities. First, we provide an overview of the currently used visualization techniques. Then, we show how probabilistic tractography can be combined with other techniques, trying to find new and useful visualizations for multi-modal data.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Assaf, Y., et al.: Diffusion tensor imaging (DTI)-based white matter mapping in brain research: a review. J. Mol. Neurosci. 34(1), 51–61 (2008)

    Article  Google Scholar 

  2. Barnes, G., et al.: Magnetoencephalogram. Scholarpedia 5(7), 3172 (2010)

    Article  Google Scholar 

  3. Barr, A.H.: Superquadrics and angle-preserving transformations. IEEE CGA 1(1), 11–23 (1981)

    Google Scholar 

  4. Basser, P.J., et al.: MR diffusion tensor spectroscopy and imaging. Biophys. J. 66, 259–267 (1994)

    Article  Google Scholar 

  5. Bauer, B., et al. Distractor heterogeneity versus linear separability in colour visual search. Perception (1996)

    Google Scholar 

  6. Behrens, T., et al.: Probabilistic diffusion tractography with multiple fibre orientations: what can we gain? Neuroimage 34(1), 144–155 (2007)

    Article  Google Scholar 

  7. Berres, A., et al.: Tractography in context: multimodal visualization of probabilistic tractograms in anatomical context. In: VCBM, pp. 9–16 (2012)

    Google Scholar 

  8. Borland, D., et al.: Rainbow color map (still) considered harmful. IEEE CGA 27(2), 14–17 (2007)

    Google Scholar 

  9. Bottger, J., et al.: Three-dimensional mean-shift edge bundling for the visualization of functional connectivity in the brain. IEEE TVCG 20(2), 471–480 (2013)

    Google Scholar 

  10. Brecheisen, R., et al.: Illustrative uncertainty visualization of DTI fiber pathways. Vis. Comput. 29(4), 297–309 (2013)

    Article  Google Scholar 

  11. Cabral, B., et al.: Imaging vector fields using line integral convolution. In: Proceedings of the 20th Annual Conference on Computer Graphics and Interactive Techniques. SIGGRAPH ’93, pp. 263–270 (1993)

    Google Scholar 

  12. Calamante, F., et al.: Track-density imaging (TDI): super-resolution white matter imaging using whole-brain track-density mapping. NeuroImage 53(4), 1233–1243 (2010)

    Article  Google Scholar 

  13. Chen, J.J., et al.: Cerebral blood flow measurement using fMRI and PET: a cross-validation study. Int. J. Biomed. Imag. (2008)

    Google Scholar 

  14. Dawson, J., et al.: Magnetic resonance imaging. Scholarpedia 3(7), 3381 (2008)

    Article  Google Scholar 

  15. Demiralp, C., et al.: Coloring 3D line fields using Boy’s real projective plane immersion. IEEE Transactions on Visualization and Computer Graphics 15(6), 1457–1464 (2009)

    Article  Google Scholar 

  16. Descoteaux, M., et al.: Deterministic and probabilistic tractography based on complex fibre orientation distributions. IEEE Trans. Med. Imag. 28(2), 269–286 (2009)

    Article  MathSciNet  Google Scholar 

  17. Douaud, G., et al.: DTI measures in crossing-fibre areas: increased diffusion anisotropy reveals early white matter alteration in MCI and mild Alzheimer’s disease. Neuroimage 55(3), 880–890 (2011)

    Article  Google Scholar 

  18. Eichelbaum, S., et al.: OpenWalnut. http://www.openwalnut.org

  19. Eichelbaum, S., et al.: Visualization of effective connectivity of the brain. In: VMV, pp. 155–162 (2010)

    Google Scholar 

  20. Eichelbaum, S., et al.: LineAO – improved three-dimensional line rendering. IEEE TVCG 19(3), 433–445 (2013)

    Google Scholar 

  21. Fillard, P., et al.: Quantitative evaluation of 10 tractography algorithms on a realistic diffusion MR phantom. NeuroImage 56(1), 220–234 (2011)

    Article  Google Scholar 

  22. Fischl, B.: FreeSurfer. NeuroImage 62(2), 774–781 (2012)

    Article  Google Scholar 

  23. Ghosh, A.: High Order Models in Diffusion MRI and Applications. Ph.D. thesis. INRIA Sophia-Antipolis Méditerranée (2011)

    Google Scholar 

  24. Golay, X., et al.: High-resolution isotropic 3D diffusion tensor imaging of the human brain. MRM 47(5), 837–843 (2002)

    Article  Google Scholar 

  25. Goldau, M., et al.: Visualizing DTI parameters on boundary surfaces of white matter fiber bundles. In: IASTED, pp. 53–61 (2011)

    Google Scholar 

  26. Goldau, M., et al.: Fiber stippling: an illustrative rendering for probabilistic diffusion tractography. In: IEEE BioVis, pp. 23–30 (2011)

    Google Scholar 

  27. Gorbach, N.S., et al.: Hierarchical information-based clustering for connectivity-based cortex parcellation. FNINF 5(18) (2011)

    Google Scholar 

  28. Gorbach, N.S., et al.: Information-theoretic connectivity-based cortex parcellation. In: MLINI, pp. 186–193 (2012)

    Google Scholar 

  29. Hlawitschka, M., et al.: In: Linsen, L., et al. (eds.) Hierarchical Poisson-Disk Sampling for Fiber Stipples. Visualization in Medicine and Life Sciences, vol. II. Springer, pp. 19–23 (2013)

    Google Scholar 

  30. Hlawitschka, M., et al.: Interactive glyph placement for tensor fields. In: Advances in Visual Computing: Third International Symposium, ISVC, vol. LNCS 4841 and LNCS 4842,pp. 331–340 (2007)

    Google Scholar 

  31. Jainek, W.M., et al.: Illustrative hybrid visualization and exploration of anatomical and functional brain data. CGF 27(3), 855–862 (2008)

    Google Scholar 

  32. Jbabdi, S., et al.: Tractography: where do we go from here? Brain Connect. 1(3), 169–183 (2011)

    Article  Google Scholar 

  33. Jenkinson, M., et al.: FSL. NeuroImage 62(2), 782–790 (2012)

    Google Scholar 

  34. Jianu, R., et al.: Exploring 3D DTI fiber tracts with linked 2D representations. IEEE TVCG 15(6), 1449–1456 (2009)

    Google Scholar 

  35. Johansen-Berg, H.: Human connectomics—what will the future demand? NeuroImage 80, 541–544 (2013)

    Article  Google Scholar 

  36. Kalender, W.A.: X-ray computed tomography. Phys. Med. Biol. 51(13), R29 (2006)

    Article  Google Scholar 

  37. Kratz, A., et al.: Anisotropic sampling of planar and two-manifold domains for texture generation and glyph distribution. TVCG 18, 1563 (2013)

    Google Scholar 

  38. Le Bihan, D., et al.: Diffusion MRI at 25: exploring brain tissue structure and function. NeuroImage 61(2), 324–341 (2012)

    Article  Google Scholar 

  39. Margulies, D.S., et al.: Visualizing the human connectome. NeuroImage 80, 445–461 (2013)

    Article  Google Scholar 

  40. Meyer-Spradow, J., et al.: Voreen: a rapid-prototyping environment for ray-casting-based volume visualizations.IEEE CGA 29(6), 6 (2009)

    Google Scholar 

  41. Mielke, M.M., et al.: Fornix integrity and hippocampal volume predict memory decline and progression to Alzheimer’s disease. Alzheimer’s Dementia 8(2), 105–113 (2012)

    Article  Google Scholar 

  42. Mori, S., et al.: MRI atlas of human white matter, Elsevier Science (2005)

    Google Scholar 

  43. Mori, S., et al.: Three-dimensional tracking of axonal projections in the brain by magnetic resonance imaging. Ann. Neurol. 45(2), 265–269 (1999)

    Article  Google Scholar 

  44. Neuner, I., et al.: Multimodal imaging utilising integrated MR-PET for human brain tumour assessment. Eur. Radiol. 22(12), 2568–2580 (2012)

    Article  Google Scholar 

  45. Nordberg, A.: PET imaging of amyloid in Alzheimer’s disease. Lancet Neurol. 3(9), 519–527 (2004)

    Article  Google Scholar 

  46. Nowinski, W., et al.: Three-dimensional interactive and stereotactic human brain atlas of white matter tracts. Neuroinformatics 10(1), 33–55 (2011)

    Article  Google Scholar 

  47. Nunez, P., et al.: Electroencephalogram.Scholarpedia 2(2), 1348 (2007)

    Article  Google Scholar 

  48. Pajevic, S., et al.: Color schemes to represent the orientation of anisotropic tissues from diffusion tensor data: application to white matter fiber tract mapping in the human brain. MRM 42, 526–540 (1999)

    Article  Google Scholar 

  49. Parker, G.J., et al.: A framework for a streamline-based probabilistic index of connectivity (PICo) using a structural interpretation of MRI diffusion measurements. JMRI 18(2), 242–254 (2003)

    Article  Google Scholar 

  50. Pelzer, E.A., et al.: Cerebellar networks with basal ganglia: feasibility for tracking cerebello-pallidal and subthalamo-cerebellar projections in the human brain. Eur. J. Neurosci. 38(8), 3106–3114 (2013)

    Article  Google Scholar 

  51. Pfister, H., et al.: Visualization in connectomics. In: CoRR abs/1206.1428 (2012)

    Google Scholar 

  52. Rogers, B.P., et al.: Assessing functional connectivity in the human brain by fMRI. In: Magn. Reson. Imag. 25(10), 1347–1357 (2007)

    Google Scholar 

  53. Rose, S.E., et al.: Loss of connectivity in Alzheimer’s disease: an evaluation of white matter tract integrity with colour coded MR diffusion tensor imaging. JNNP 69(4), 528–530 (2000)

    Google Scholar 

  54. Schmahmann, J.D., et al.: Fiber Pathways of the Brain. Oxford University Press (2006)

    Google Scholar 

  55. Shenton, M., et al.: A review of magnetic resonance imaging and diffusion tensor imaging findings in mild traumatic brain injury. Brain Imag. Behav. 6(2), 137–192 (2012)

    Article  Google Scholar 

  56. Small, G.W., et al.: PET scanning of brain tau in retired national football league players: preliminary findings. Am. J. Geriatr. Psychiatry 21(2), 138–144 (2013)

    Article  Google Scholar 

  57. Sporns, O.: Brain connectivity. Scholarpedia 2(10), 4695 (2007)

    Article  Google Scholar 

  58. Sporns, O., et al.: The human connectome: a structural description of the human brain. PLoS Comput. Biol. 1(4), e42 (2005)

    Article  Google Scholar 

  59. Vaphiades, M.S., et al.: Management of intracranial aneurysm causing a third cranial nerve palsy: MRA, CTA or DSA? Semin. Ophthalmol. 23(3), 143–150 (2008)

    Article  Google Scholar 

  60. von Kapri, A., et al.: Evaluating a visualization of uncertainty in probabilistic tractography. Proc. SPIE 7625(1), 762534 (2010)

    Article  Google Scholar 

  61. Ware, C.: Information visualization: perception for design. Morgan Kaufman (2012)

    Google Scholar 

  62. Wassermann, D., et al.: Unsupervised white matter fiber clustering and tract probability map generation: applications of a Gaussian process framework for white matter fibers. NeuroImage 51(1), 228–241 (2010)

    Article  Google Scholar 

  63. Wedeen, V.J., et al.: Diffusion spectrum magnetic resonance imaging (DSI) tractography of crossing fibers. Neuroimage 41(4), 1267–1277 (2008)

    Article  Google Scholar 

  64. Wyszecki, G., et al.: Color science. John Wiley and Sons (1982)

    Google Scholar 

  65. Yotter, R.A., et al.: Local cortical surface complexity maps from spherical harmonic reconstructions. NeuroImage 56(3), 961–973 (2011)

    Article  Google Scholar 

  66. Zhang, S., et al.: Identifying white-matter fiber bundles in DTI data using an automated proximity-based fiber-clustering method. IEEE TVCG 14, 1044–1053 (2008)

    Google Scholar 

  67. Zhan, L., et al.: How many gradients are sufficient in high-angular resolution diffusion imaging (HARDI). In: 13th OHBM (2008)

    Google Scholar 

Download references

Acknowledgements

The authors thank the OpenWalnut project [18] for providing the software framework supporting neuroscience visualization and for distributing the Fiber Stipple source code. The software platform was used for conducting this study. We thank C. Heine and A. Wiebel for the fruitful discussions and for commenting on drafts of this article. Last but not least we want to thank the reviewers which gave us very helpful comments and advises.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Mathias Goldau or Mario Hlawitschka .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this paper

Cite this paper

Goldau, M., Hlawitschka, M. (2016). Multi-Modal Visualization of Probabilistic Tractography. In: Linsen, L., Hamann, B., Hege, HC. (eds) Visualization in Medicine and Life Sciences III. Mathematics and Visualization. Springer, Cham. https://doi.org/10.1007/978-3-319-24523-2_9

Download citation

Publish with us

Policies and ethics