Skip to main content

Public and Secret Forgetting of Propositional Formulas

  • Conference paper
  • First Online:
Advances in Artificial Intelligence (CAEPIA 2015)

Abstract

This paper presents two operations over Kripke models for representing the act of an agent forgetting the truth-value of a given propositional formula. The first is a form of ‘public’ forgetting (built over previous monoagent proposals) after which all agents know that the forgetful one has indeed forgotten the given formula; the second is a form of ‘secret’ forgetting after which the forgetful agent knows what has happened but the rest of them remain oblivious of the action.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Still, some approaches in the knowledge representation area deal with the forgetting of sets of atomic propositions in single-agent scenarios (e.g., [4, 5]).

  2. 2.

    Thus, this action is unrelated to others that involve, e.g., changes in awareness [6, 7].

  3. 3.

    Trivially, the atoms in literals of \(\bigcup {\mathcal {C}}(\pi )\) are the same as in \(\bigcup {\mathcal {C}}(\lnot \pi )\), hence the same as in \(\bigcup {\mathcal {C}}(\pi ) \cup \bigcup {\mathcal {C}}(\lnot \pi )\) too.

References

  1. Alchourrón, C.E., Gärdenfors, P., Makinson, D.: On the logic of theory change: partial meet contraction and revision functions. J. Symbolic logic 50(2), 510–530 (1985)

    Article  MATH  MathSciNet  Google Scholar 

  2. van Ditmarsch, H., van der Hoek, W., Kooi, B.: Dynamic Epistemic Logic. Synthese Library Series, vol. 337. Springer, Netherlands (2008)

    MATH  Google Scholar 

  3. van Benthem, J.: Logical Dynamics of Information and Interaction. Cambridge University Press, Cambridge (2011)

    Book  MATH  Google Scholar 

  4. Zhang, Y., Zhou, Y.: Properties of knowledge forgetting. In: Proceedings of the 10th International Workshop on Non-Monotonic Reasoning (NMR-2008), pp. 68–75 (2008)

    Google Scholar 

  5. Zhang, Y., Zhou, Y.: Knowledge forgetting: properties and applications. Artif. Intell. 173(16–17), 1525–1537 (2009)

    Article  MATH  Google Scholar 

  6. van Benthem, J., Velázquez-Quesada, F.R.: The dynamics of awareness. Synthese 177(Suppl.–1), 5–27 (2010)

    Article  MATH  Google Scholar 

  7. van Ditmarsch, H., French, T., Velázquez-Quesada, F.R., Wang, Y.: Knowledge, awareness, and bisimulation. In Schipper, B.C. (ed.) TARK, pp. 61–70 (2013)

    Google Scholar 

  8. van Ditmarsch, H., Herzig, A., Lang, J., Marquis, P.: Introspective forgetting. Synth. (Knowl. Ration. Action) 169(2), 405–423 (2009)

    MATH  Google Scholar 

  9. Fernández-Duque, D., Nepomuceno-Fernández, Á., Sarrión-Morrillo, E., Soler-Toscano, F., Velázquez-Quesada, F.R.: Forgetting complex propositions. Logic J. IGPL. Draft: arXiv:1507.01111 [cs.LO] (2015, Submitted)

  10. Blackburn, P., de Rijke, M., Venema, Y.: Modal Logic. Cambridge Tracts in Theoretical Computer Science, vol. 53. Cambridge University Press, Cambridge (2001)

    Book  MATH  Google Scholar 

  11. Quine, W.V.O.: The problem of simplifying truth functions. Am. Math. Mon. 59(8), 521–531 (1952)

    Article  MATH  MathSciNet  Google Scholar 

  12. de Kleer, J.: An improved incremental algorithm for generating prime implicates. In Swartout, W.R. (ed.) Proceedings of the 10th National Conference on A.I, pp. 780–785. AAAI Press/The MIT Press, San Jose, CA, 12–16 July 1992

    Google Scholar 

  13. Kean, A., Tsiknis, G.K.: An incremental method for generating prime implicants/implicates. J. Symb. Comput. 9(2), 185–206 (1990)

    Article  MATH  MathSciNet  Google Scholar 

  14. Rymon, R.: An SE-tree-based prime implicant generation algorithm. Ann. Math. Artif. Intell. 11(1–4), 351–366 (1994)

    Article  MATH  Google Scholar 

  15. Bittencourt, G.: Combining syntax and semantics through prime form representation. J. Log. Comput. 18(1), 13–33 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  16. Pagnucco, M.: Knowledge compilation for belief change. In: Sattar, A., Kang, B.-H. (eds.) AI 2006. LNCS (LNAI), vol. 4304, pp. 90–99. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

  17. Zhuang, Z.Q., Pagnucco, M., Meyer, T.: Implementing iterated belief change via prime implicates. In: Orgun, M.A., Thornton, J. (eds.) AI 2007. LNCS (LNAI), vol. 4830, pp. 507–518. Springer, Heidelberg (2007)

    Google Scholar 

Download references

Acknowledgements

We acknowledge support from projects FFI2014-56219-P (Minist. Economía y Competitividad) and P10-HUM-5844 (Junta de Andalucía).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fernando Soler-Toscano .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this paper

Cite this paper

Nepomuceno-Fernández, Á., Sarrión-Morrillo, E., Soler-Toscano, F., Velázquez-Quesada, F.R. (2015). Public and Secret Forgetting of Propositional Formulas. In: Puerta, J., et al. Advances in Artificial Intelligence. CAEPIA 2015. Lecture Notes in Computer Science(), vol 9422. Springer, Cham. https://doi.org/10.1007/978-3-319-24598-0_13

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-24598-0_13

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-24597-3

  • Online ISBN: 978-3-319-24598-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics