Skip to main content

Motor Control and Learning Theories

  • Chapter
  • First Online:
Emerging Therapies in Neurorehabilitation II

Part of the book series: Biosystems & Biorobotics ((BIOSYSROB,volume 10))

Abstract

Patients who have suffered impairment of their neuromotor abilities due to a disease or accident have to relearn to control their bodies. For example, after stroke the ability to coordinate the movements of the upper limb in order to reach and grasp an object could be severely damaged. Or in the case of amputees, the functional ability is completely lost.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    In practice, also covariance shift changes are possible, changing also the shape of the data [46] .

References

  1. Toshiyuki, F., Yuko, K., Kaoru, H., Yoshihiro, M., Tetsuya, T., Rieko, O., Kimitaka, H., Yoshihisa, M., Meigen, L.: Motor improvement and corticospinal modulation induced by hybrid assistive neuromuscular dynamic stimulation (HANDS) therapy in patients with chronic stroke. Neurorehabilitation Neural Repair 23(2), 125–132 (2009)

    Google Scholar 

  2. Aboukhalil, A., Shelhamer, M., Clendaniel, R.: Acquisition of context-specific adaptation is enhanced with rest intervals between changes in context state, suggesting a new form of motor consolidation. Neurosci. Lett. 369(2), 162–167 (2004)

    Article  Google Scholar 

  3. Alain, D., Rudolph-Lilith, M., Destexhe, A.: Neuronal Noise. Springer, New York (2012)

    Google Scholar 

  4. Amsuess, S., Goebel, P., Graimann, B., Farina, D.: A Multi-Class Proportional Myocontrol Algorithm for Upper Limb Prosthesis Control: Validation in Real-Life Scenarios on Amputees. IEEE Transactions on Neural Systems and Rehabilitation Engineering, PP(99):1 (2014)

    Google Scholar 

  5. Ariff, G., Donchin, O., Nanayakkara, T., Shadmehr, R.: A real-time state predictor in motor control: study of saccadic eye movements during unseen reaching movements. J. Neurosci. 22(17), 7721–7729 (2002)

    Google Scholar 

  6. Baraduc, P., Wolpert, D.M.: Adaptation to a visuomotor shift depends on the starting posture. J. Neurophysiol. 88(2), 973–981 (2002)

    Google Scholar 

  7. Barnes, M.P.: Principles of neurological rehabilitation. J. Neurol. Neurosurg. Psychiatry 74(90004), 3iv–7 (2003)

    Google Scholar 

  8. Bastian, A.J.: Moving, sensing and learning with cerebellar damage. Curr. Opin. Neurobiol. 21(4), 596–601 (2011)

    Article  Google Scholar 

  9. Berniker, M., Mirzaei Buini, H., Körding, K.P.: The effects of training breadth on motor generalization. J. Neurophysiol. 112, 2791–2798 (2014)

    Google Scholar 

  10. Berniker, M., Voss, M., Körding, K.P.: Learning priors for Bayesian computations in the nervous system. PLoS ONE, 5(9), e12686 (2010)

    Google Scholar 

  11. Bernstein, N.A.: The Co-ordination and Regulation of Movements. Pergamon, New York (1967)

    Google Scholar 

  12. Bertsekas, D.: Dynamic Programming and Optimal Control. Athena Scientific, Belmont (1995)

    MATH  Google Scholar 

  13. Bolton, D.A.E., Cauraugh, J.H., Hausenblas, H.A.: Electromyogram-triggered neuromuscular stimulation and stroke motor recovery of arm/hand functions: a meta-analysis. J. Neurol. Sci. 223(2), 121–127 (2004)

    Article  Google Scholar 

  14. Braun, D.A., Aertsen, A., Wolpert, D.M., Mehring, C.: Motor task variation induces structural learning. Curr. Biol. CB 19(4), 352–357 (2009)

    Article  Google Scholar 

  15. Braun, D.A., Mehring, C., Wolpert, D.M.: Structure learning in action. Behav. Brain Res. 206(2), 157–165 (2010)

    Article  Google Scholar 

  16. Burridge, J.H., Ladouceur, M.: Clinical and therapeutic applications of neuromuscular stimulation: a review of current use and speculation into future developments. Neuromodulation J. Int. Neuromodulation Soc. 4(4), 147–154 (2001)

    Article  Google Scholar 

  17. Cauraugh, J., Light, K., Kim, S., Thigpen, M., Behrman, A.: Chronic motor dysfunction after stroke recovering wrist and finger extension by electromyography-triggered neuromuscular stimulation. Stroke 31(6), 1360–1364 (2000)

    Article  Google Scholar 

  18. Cauraugh, J.H.: Coupled rehabilitation protocols and neural plasticity: upper extremity improvements in chronic hemiparesis. Restorative Neurology and Neuroscience, vol. 22(3–5). IOS Press (2004)

    Google Scholar 

  19. Cauraugh, J.H., Kim, S.B.: Stroke motor recovery: active neuromuscular stimulation and repetitive practice schedules. J. Neurol. Neurosurg. Psychiatry 74(11), 1562–1566 (2003)

    Article  Google Scholar 

  20. Christou, E.A., Grossman, M., Carlton, L.G.: Modeling variability of force during isometric contractions of the quadriceps femoris. J. Mot. Behav. 34(1), 67–81 (2002)

    Article  Google Scholar 

  21. Criscimagna-Hemminger, S.E., Donchin, O., Gazzaniga, M.S., Shadmehr, R.: Learned dynamics of reaching movements generalize from dominant to nondominant arm. J. Neurophysiol. 89(1), 168–176 (2002)

    Article  Google Scholar 

  22. Danion, F., Schoener, G., Latash, M.L., Li, S., Scholz, J.P., Zatsiorsky, V.M.: A mode hypothesis for finger interaction during multi-finger force-production tasks. Biol. Cybern. 88(2), 91–98 (2003)

    Article  MATH  Google Scholar 

  23. De Kroon, J.R., IJzerman, M.J.: Electrical stimulation of the upper extremity in stroke: cyclic versus EMG-triggered stimulation. Clin. Rehabil. 22(8), 690–697 (2008)

    Google Scholar 

  24. de Rugy, A., Loeb, G.E., Carroll, T.J.: Muscle coordination is habitual rather than optimal. J. Neurosci. 32(21), 7384–7391 (2012)

    Article  Google Scholar 

  25. Diedrichsen, J.: Optimal task-dependent changes of bimanual feedback control and adaptation. Curr. Biol. CB 17(19), 1675–1679 (2007)

    Article  Google Scholar 

  26. Diedrichsen, J., Hashambhoy, Y., Rane, T., Shadmehr, R.: Neural correlates of reach errors. J. Neurosci. 25(43), 9919–9931 (2005)

    Article  Google Scholar 

  27. Diedrichsen, J., Shadmehr, R., Ivry, R.B.: The coordination of movement: optimal feedback control and beyond. Trends Cogn. Sci. 14(1), 31–39 (2009)

    Article  Google Scholar 

  28. Diedrichsen, J., White, O., Newman, D., Lally, N.: Use-dependent and error-based learning of motor behaviors. J. Neurosci. 30(15), 5159–5166 (2010)

    Article  Google Scholar 

  29. Doya, K.: What are the computations of the cerebellum, the basal ganglia and the cerebral cortex? Neural Netw. 12(7–8), 961–974 (1999)

    Article  Google Scholar 

  30. Faisal, A.A., Selen, L.P.J., Wolpert, D.M.: Noise in the nervous system. Nat. Rev. Neurosci. 9(4), 292–303 (2008)

    Article  Google Scholar 

  31. Feldman, A.G.: Functional tuning of the nervous system with control of movement or maintenance of a steady posture. Biophysics 11, 565–578 (1966)

    Google Scholar 

  32. Feldman, A.G.: Once more on the equilibrium-point hypothesis (lambda model) for motor control. J. Mot. Behav. 18, 17–54 (1986)

    Article  Google Scholar 

  33. Feldman, A.G., Levin, M.F.: The origin and use of positional frames of reference in motor control. Behav. Brain Sci. 18, 723–806 (1995)

    Article  Google Scholar 

  34. Fernandes, H.L., Stevenson, I.H., Vilares, I., Körding, K.P.: The generalization of prior uncertainty during reaching. J. Neurosci. 34(34), 11470–11484 (2014)

    Article  Google Scholar 

  35. Flanagan, J. R., Bowman, M. C., and Johansson, R. S.: Control strategies inobject manipulation tasks. Curr. Opin. Neurobiol. 16(6):650–659 (2005)

    Google Scholar 

  36. Flanagan, J.R., Vetter, P., Johansson, R.S., Wolpert, D.M.: Prediction precedes control in motor learning. Curr. Biol. CB 13(2), 146–150 (2003)

    Article  Google Scholar 

  37. Flanagan, J. R. and Wing, A. M.: The role of internal models in motionplanning and control: evidence from grip force adjustments during movements ofhand-held loads. J. Neurosci. 17(4):1519–1528 (1997)

    Google Scholar 

  38. Flash, T., Hogan, N.: The coordination of arm movements: an experimentally confirmed mathematical model. J. Neurosci. 5(7), 1688–1703 (1985)

    Google Scholar 

  39. Flor, H., Koeppe, C.: Cortical reprogramming: significance for phantom phenomena and clinical implications. In: Lomber, S., Eggermont, J. (eds.) Reprogramming the Cerebral Cortex: Plasticity Following Central and Peripheral Lesions. Oxford University Press, Oxford (2006)

    Google Scholar 

  40. Franklin, D.W., Wolpert, D.M.: Specificity of reflex adaptation for task-relevant variability. J. Neurosci. 28(52), 14165–14175 (2008)

    Article  Google Scholar 

  41. Franklin, D.W., Wolpert, D.M.: Computational mechanisms of sensorimotor control. Neuron 72(3), 425–442 (2010)

    Article  Google Scholar 

  42. Freitas, S.M.S.F., Duarte, M., Latash, M.L.: Two kinematic synergies in voluntary whole-body movements during standing. J. Neurophysiol. 95(2), 636–645 (2006)

    Article  Google Scholar 

  43. Frey, S.H., Fogassi, L., Grafton, S., Picard, N., Rothwell, J.C., Schweighofer, N., Corbetta, M., Fitzpatrick, S.M.: Neurological principles and rehabilitation of action disorders: computation, anatomy, and physiology (CAP) model. Neurorehabilitation Neural Repair 25(5 suppl), 6S–20S (2011)

    Article  Google Scholar 

  44. Galea, J.M., Vazquez, A., Pasricha, N., de Xivry, J.-J., Celnik, P.A.: Dissociating the roles of the cerebellum and motor cortex during adaptive learning: the motor cortex retains what the cerebellum learns. Cereb. Cortex 21(8), 1761–1770 (2011)

    Article  Google Scholar 

  45. Ge, N., Goebel, P.M., Amsuess, S., Paredes, L., Pawlik, R., Farina, D.: Evaluating upper-limb EMG-prosthesis user performance by combining psychometric measures and classification-rates. In: 2013 6th International IEEE/EMBS Conference on Neural Engineering (NER), pp. 359–362 (2013)

    Google Scholar 

  46. Globerson, A., Hui, T.C., Smola, A., Sam, R.: An adversarial view of covariate shift and a minimax approach. In: Joaquin, Q.-C., Masashi, S., Anton, S., Neil, L. (eds.) Dataset Shift in Machine Learning. Cambridge MA, London UK (MIT Press) (2008)

    Google Scholar 

  47. Grimaldi, G., Argyropoulos, G.P., Boehringer, A., Celnik, P.A., Edwards, M.J., Ferrucci, R., Galea, J.M., Groiss, S.J., Hiraoka, K., Kassavetis, P., Lesage, E., Manto, M., Miall, R.C., Priori, A., Sadnicka, A., Ugawa, Y., Ziemann, U. (2014). Non-invasive cerebellar stimulation-a consensus paper. Cerebellum (London, England) 13(1), 121–138

    Google Scholar 

  48. Grotta, J.C., Noser, E. A., Ro, T., Boake, C., Levin, H., Aronowski, J., Schallert, T.: Constraint-induced movement therapy. Stroke J. Cereb. Cir. 35(11 Suppl 1), 2699–2701 (2004)

    Google Scholar 

  49. Guigon, E., Baraduc, P., Desmurget, M.: Computational motor control: redundancy and invariance. J. Neurophysiol. 97(1), 331–347 (2006)

    Article  Google Scholar 

  50. Haith, A.M., Krakauer, J.W.: The Routledge Handbook of Motor Control and Motor Learning, Chapter Theoretica, pp. 7–28. Routledge, London (2013)

    Google Scholar 

  51. Hallett, M.: Plasticity of the human motor cortex and recovery from stroke. Brain Res. Rev. 36(2), 169–174 (2001)

    Article  Google Scholar 

  52. Hanneke, B., van der Sluis, C., Bongers, R.: Changes in performance over time while learning to use a myoelectric prosthesis. J. NeuroEng. Rehabilitation 11(1), 16 (2014)

    Article  Google Scholar 

  53. Harris, C.M., Wolpert, D.M.: Signal-dependent noise determines motor planning. Nature 394(6695), 780–784 (1998)

    Article  Google Scholar 

  54. Haruno, M., Wolpert, D.M.: Optimal control of redundant muscles in step-tracking wrist movements. J. Neurophysiol. 94(6), 4244–4255 (2005)

    Article  Google Scholar 

  55. Hemmen, B., Seelen, H.A.M.: Effects of movement imagery and electromyography-triggered feedback on arm-hand function in stroke patients in the subacute phase. Clin. Rehabilitation 21(7), 587–594 (2007)

    Article  Google Scholar 

  56. Huang, V.S., Haith, A.M., Mazzoni, P., Krakauer, J.W.: Rethinking motor learning and savings in adaptation paradigms: model-free memory for successful actions combines with internal models. Neuron 70(4), 787–801 (2011)

    Article  Google Scholar 

  57. Huang, V.S., Shadmehr, R.: Evolution of motor memory during the seconds after observation of motor error. J. Neurophysiol. 97(6), 3976–3985 (2007)

    Article  Google Scholar 

  58. Huang, V.S., Shadmehr, R.: Persistence of motor memories reflects statistics of the learning event. J. Neurophysiol. 102(2), 931–940 (2009)

    Article  Google Scholar 

  59. IJzerman, M.J., Renzenbrink, G.J., Geurts, A.C.H.: Neuromuscular stimulation after stroke: from technology to clinical deployment. Expert Rev. Neurothe. 9(4), 541–552 (2009)

    Google Scholar 

  60. Izawa, J., Rane, T., Donchin, O., Shadmehr, R.: Motor adaptation as a process of reoptimization. J. Neurosci. 28(11), 2883–2891 (2008)

    Article  Google Scholar 

  61. Joiner, W.M., Smith, M.A.: Long-term retention explained by a model of short-term learning in the adaptive control of reaching. J. Neurophysiol. 100(5), 2948–2955 (2008)

    Article  Google Scholar 

  62. Jones, K.E., de C. Hamilton, A.F., Wolpert, D.M.: Sources of signal-dependent noise during isometric force production. J. Neurophysiol. 8(3), 1533–1544 (2002)

    Google Scholar 

  63. Kitago, T., Krakauer, J.W.: Chapter 8—Motor learning principles for neurorehabilitation. In: Barnes, M.P., Good, D.C. (eds.) Neurological Rehabilitation, vol. 110. Handbook of Clinical Neurology, pp. 93–103. Elsevier,Edinburgh, London, New York, Oxford, Philadephia, St Louis, Sidney, Toronto (2013a)

    Google Scholar 

  64. Kitago, T., Krakauer, J.W.: Motor learning principles for neurorehabilitation. Handb. Clin. Neurol. 110, 93–103 (2013b)

    Article  Google Scholar 

  65. Kluzik, J., Diedrichsen, J., Shadmehr, R., Bastian, A.J.: Reach adaptation: what determines whether we learn an internal model of the tool or adapt the model of our arm? J. Neurophysiol. 100(3), 1455–1464 (2008)

    Article  Google Scholar 

  66. Koerding, K.P., Ku, S.-P., Wolpert, D.M., Körding, K.P.: Bayesian integration in force estimation. J. Neurophysiol. 92(5), 3161–3165 (2004a)

    Article  Google Scholar 

  67. Koerding, K.P., Wolpert, D.M., Körding, K.P.: Bayesian integration in sensorimotor learning. Nature 427(6971), 244–247 (2004b)

    Article  Google Scholar 

  68. Krakauer, J.W.: Motor learning: its relevance to stroke recovery and neurorehabilitation. Curr. Opin. Neurol. 19(1), 84–90 (2006)

    Article  Google Scholar 

  69. Krakauer, J.W., Mazzoni, P.: Human sensorimotor learning: adaptation, skill, and beyond. Curr. Opin. Neurol. 21(4), 636–644 (2011)

    Article  Google Scholar 

  70. Krakauer, J.W., Mazzoni, P., Ghazizadeh, A., Ravindran, R., Shadmehr, R.: Generalization of motor learning depends on the history of prior action. PLoS Biol. 4(10), e316–e316 (2006)

    Article  Google Scholar 

  71. Krishnamoorthy, V., Goodman, S., Zatsiorsky, V., Latash, M.L.: Muscle synergies during shifts of the center of pressure by standing persons: identification of muscle modes. Biol. Cybern. 89(2), 152–161 (2003)

    Article  MATH  Google Scholar 

  72. Latash, M.L.: Neurophysiological basis of movement. Human Kinetics; 2 edition (December 13, 2007) (2008)

    Google Scholar 

  73. Latash, M.L., Scholz, J.F., Danion, F., Schoener, G.: Structure of motor variability in marginally redundant multifinger force production tasks. Exp. Brain Res. 141, 153–165 (2001)

    Article  Google Scholar 

  74. Latash, M.L., Scholz, J.P., Schoener, G.: Motor control strategies revealed in the structure of motor variability. Exerc. Sport Sci. Rev. 30(1), 26–31 (2002)

    Article  Google Scholar 

  75. Latash, M.L.M.L., Gorniak, S., Zatsiorsky, V.M.V.M.: Hierarchies of synergies in human movements. Kinesiology 40(1), 29–38 (2008)

    Google Scholar 

  76. Lee, J.Y., Schweighofer, N.: Dual adaptation supports a parallel architecture of motor memory. J. Neurosci. 29(33), 10396–10404 (2009)

    Article  Google Scholar 

  77. Loeb, G.E.: Optimal isnt good enough. Biol. Cybern. 106(11–12), 757–765 (2012)

    Article  Google Scholar 

  78. Lynch, C.L., Popovic, M.R.: Functional electrical stimulation. IEEE Control Syst. Mag. 28(2), 40–50 (2008)

    Article  MathSciNet  Google Scholar 

  79. Mark, V.W., Taub, E.: Constraint-induced movement therapy for chronic stroke hemiparesis and other disabilities. Restorative Neurol. Neurosci. 22(3), 317–336 (2004)

    Google Scholar 

  80. Marr, D.: Vision. volume 94 (1985)

    Google Scholar 

  81. Martin, V.: A dynamical systems account of the uncontrolled manifold and motor equivalence in human pointing movements—a theoretical study. Dissertation, Ruhr Universitaet Bochum (2006)

    Google Scholar 

  82. Mazzoni, P., Krakauer, J.W.: An implicit plan overrides an explicit strategy during visuomotor adaptation. J. Neurosci. 26(14), 3642–3645 (2006)

    Article  Google Scholar 

  83. Miall, R.C., Christensen, L.O.D., Cain, O., Stanley, J.: Disruption of state estimation in the human lateral cerebellum. PLOS Biol. 5, e316 (2007)

    Article  Google Scholar 

  84. Morasso, P.: Spatial control of arm movements. Exp. Brain Res. 42(2), 223–227 (1981)

    Article  Google Scholar 

  85. Müller, H., Sternad, D.: Decomposition of variability in the execution of goal-oriented tasks: three components of skill improvement. J. Exp. Psychol. Human Percept. Perform. 30(1), 212–233 (2004)

    Article  Google Scholar 

  86. Müller, H., Sternad, D.: Motor learning: changes in the structure of variability in a redundant task. Advances in Experimental Medicine and Biology, pp. 439–456 (2008)

    Google Scholar 

  87. Nagengast, A.J., Braun, D.A., Wolpert, D.M.: Optimal control predicts human performance on objects with internal degrees of freedom. PLoS Comput. Biol. 5(6),e1000419–e1000419 (2009)

    Google Scholar 

  88. Nanayakkara, T., Shadmehr, R.: Saccade adaptation in response to altered arm dynamics. J. Neurophysiol. 90(6), 4016–4021 (2003)

    Article  Google Scholar 

  89. O’Sullivan, I., Burdet, E., Diedrichsen, J.: Dissociating variability and effort as determinants of coordination. PLoS Comput. Biol. 5(4), e1000345 (2009)

    Article  Google Scholar 

  90. Pasalar, S., Roitman, A.V., Durfee, W.K., Ebner, T.J.: Force field effects on cerebellar Purkinje cell discharge with implications for internal models. Nat. Neurosci. 9, 1404–1411 (2006)

    Article  Google Scholar 

  91. Ramachandran, V.S., Rogers-Ramachandran, D.: Phantom limbs and neural plasticity. Arch. Neurol. 57(3), 317–320 (2000)

    Article  Google Scholar 

  92. Reinkensmeyer, D.J., Emken, J.L., Cramer, S.C.: Robotics, motor learning, and neurologic recovery. Annu. Rev. Biomed. Eng. 6, 497–525 (2004)

    Article  Google Scholar 

  93. Reinkensmeyer, D.J., Patton, J.L.: Can robots help the learning of skilled actions? Exerc. Sport Sci. Rev. 37(1), 43–51 (2009)

    Article  Google Scholar 

  94. Reis, J., Schambra, H.M., Cohen, L.G., Buch, E.R., Fritsch, B., Zarahn, E., Celnik, P.A., Krakauer, J.W.: Noninvasive cortical stimulation enhances motor skill acquisition over multiple days through an effect on consolidation. Proc. Nat. Acad. Sci. U.S.A. 106(5), 1590–1595 (2009)

    Article  Google Scholar 

  95. Reisman, D.S., Wityk, R., Silver, K., Bastian, A.J.: Locomotor adaptation on a split-belt treadmill can improve walking symmetry post-stroke. Brain J. Neurol. 130(Pt 7), 1861–1872 (2007)

    Article  Google Scholar 

  96. Rolls, E.T., Deco, G.: The Noisy Brain: Stochastic Dynamics as a Principle of Brain Function. Oxford University Press, Oxford (2010)

    Book  MATH  Google Scholar 

  97. Rosenbaum, D.A.: Human Motor Control. Academic Press, San Diego, CA (1991)

    Google Scholar 

  98. Scheidt, R.A., Stoeckmann, T.: Reach adaptation and final position control amid environmental uncertainty after stroke. J. Neurophysiol. 97(4), 2824–2836 (2007)

    Google Scholar 

  99. Schlerf, J., Ivry, R.B., Diedrichsen, J.: Encoding of sensory prediction errors in the human cerebellum. J. Neurosci. 32(14), 4913–4922 (2012a)

    Article  Google Scholar 

  100. Schlerf, J.E., Galea, J.M., Bastian, A.J., Celnik, P.A.: Dynamic modulation of cerebellar excitability for abrupt, but not gradual, visuomotor adaptation. J. Neurosci. 32(34), 11610–11617 (2012b)

    Article  Google Scholar 

  101. Schmalzl, L., Thomke, E., Ragnoe, C., Nilseryd, M., Stockselius, A., Ehrsson, H.: Pulling telescoped phantoms out of the stump: manipulating the perceived position of phantom limbs using a full-body illusion. Front. Hum. Neurosci. 5(121), 12 (2011)

    Google Scholar 

  102. Scholz, J.P.: Dynamic pattern theory—some implications for therapeutics. Phys. Ther. 70(12), 827–843 (1990)

    Article  Google Scholar 

  103. Scott, S.H.: Optimal feedback control and the neural basis of volitional motor control. Nat. Rev. Neurosci. 5(7), 532–546 (2004)

    Article  Google Scholar 

  104. Shadmehr, R., Krakauer, J.W.: A computational neuroanatomy for motor control. Exp. Brain Res. 185(3), 359–381 (2008)

    Article  Google Scholar 

  105. Shadmehr, R., Mussa-Ivaldi, F.A.: Adaptive representation of dynamics during learning of a motor task. J. Neurosci. 14(5), 3208–3224 (1994)

    Google Scholar 

  106. Shadmehr, R., Smith, M.A., Krakauer, J.W.: Error correction, sensory prediction, and adaptation in motor control. Annu. Rev. Neurosci. 33(1), 89–108 (2010)

    Article  Google Scholar 

  107. Sheffler, L.R., Chae, J.: Neuromuscular electrical stimulation in neurorehabilitation. Muscle Nerve 35(5), 562–590 (2007)

    Article  Google Scholar 

  108. Shim, J.K., Latash, M.L., Zatsiorsky, V.M.: Prehension synergies in three dimensions. J. Neurophysiol. 93(2), 766–776 (2005)

    Article  Google Scholar 

  109. Shmuelof, L., Krakauer, J.W., Mazzoni, P.: How is a motor skill learned? Change and invariance at the levels of task success and trajectory control. J. Neurophysiol. 108(2), 578–594 (2012)

    Article  Google Scholar 

  110. Sing, G.C., Smith, M.A.: Reduction in learning rates associated with anterograde interference results from interactions between different timescales in motor adaptation. PLoS Comput. Biol. 6(8), e1000893 (2009)

    Google Scholar 

  111. Smith, M.A., Ghazizadeh, A., Shadmehr, R.: Interacting adaptive processes with different timescales underlie short-term motor learning. PLoS Biol. 4(6), e179–e179 (2006)

    Article  Google Scholar 

  112. Stocker, A.A., Simoncelli, E.P.: Noise characteristics and prior expectations in human visual speed perception. Nat. Neurosci. 9, 578–585 (2006)

    Article  Google Scholar 

  113. Taylor, J.A., Klemfuss, N.M., Ivry, R.B.: An explicit strategy prevails when the cerebellum fails to compute movement errors. Cerebellum (London, England), 9(4), 580–586 (2010)

    Google Scholar 

  114. Thelen, E., Ulrich, B.D.: Hidden skills: a dynamic systems analysis of treadmill stepping during the first year. Monogr. Soc. Res. Child Dev. 56(1), 1–98 (1991)

    Article  Google Scholar 

  115. Todorov, E.: Optimality principles in sensorimotor control. Nat. Neurosci. 7(9), 907–915 (2004)

    Article  Google Scholar 

  116. Todorov, E., Jordan, M.I.: Optimal feedback control as a theory of motor coordination. Nat. Neurosci. 5(11), 1226–1235 (2002)

    Article  Google Scholar 

  117. Tseng, Y., Diedrichsen, J., Krakauer, J.W., Shadmehr, R., Bastian, A.J.: Sensory prediction errors drive cerebellum-dependent adaptation of reaching. J. Neurophysiol. 98(1), 54–62 (2007)

    Article  Google Scholar 

  118. Turvey, M.T., Fitch, H.L., Tuller, B.: The Bernstein perspective: I. The problems of degrees of freedom and context-conditioned variability. In: Kelso, S. (ed.) Human Motor Behavior: An Introduction. Psychology Press (1982)

    Google Scholar 

  119. Uno, Y., Kawato, M., Suzuki, R.: Formation and control of optimal trajectory in human multijoint arm movement—minimum Torque-Change model. Biol. Cybern. 61(2), 89–101 (1989)

    Article  Google Scholar 

  120. van der Lee, J.: Constraint-induced movement therapy: some thoughts about theories and evidence. J. Rehabilitation Med. 35, 41–45 (2003)

    Article  Google Scholar 

  121. Verstynen, T., Sabes, P.N.: How each movement changes the next: an experimental and theoretical study of fast adaptive priors in reaching. J. Neurosci. 31(27), 10050–10059 (2011)

    Article  Google Scholar 

  122. Wang, J., Sainburg, R.L.: Interlimb transfer of novel inertial dynamics is asymmetrical. J. Neurophysiol. 92(1), 349–360 (2004)

    Article  Google Scholar 

  123. Wang, Y., Zatsiorsky, V.M., Latash, M.L.: Muscle synergies involved in shifting the center of pressure while making a first step. Exp. Brain Res. 167(2), 196–210 (2005)

    Article  Google Scholar 

  124. Wei, K., Körding, K.P.: Relevance of error: what drives motor adaptation? J. Neurophysiol. 101(2), 655–664 (2009)

    Article  Google Scholar 

  125. Wolpert, D.M., Diedrichsen, J., Flanagan, J.R.: Principles of sensorimotor learning. Nat. Rev. Neurosci. 12(12), 739–751 (2011)

    Google Scholar 

  126. Xu-Wilson, M., Chen-Harris, H., Zee, D.S., Shadmehr, R.: Cerebellar contributions to adaptive control of saccades in humans. J. Neurosci. 29(41), 12930–12939 (2009)

    Article  Google Scholar 

  127. Zatsiorsky, V.M., Latash, M.L.: Prehension synergies. Exerc. Sport Sci. Rev. 32, 75–80 (2004)

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Cristiano Alessandro .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Alessandro, C., Beckers, N., Goebel, P., Resquin, F., González, J., Osu, R. (2016). Motor Control and Learning Theories. In: Pons, J., Raya, R., González, J. (eds) Emerging Therapies in Neurorehabilitation II. Biosystems & Biorobotics, vol 10. Springer, Cham. https://doi.org/10.1007/978-3-319-24901-8_9

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-24901-8_9

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-24899-8

  • Online ISBN: 978-3-319-24901-8

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics