Skip to main content

Graphene for Silicon Microelectronics: Ab Initio Modeling of Graphene Nucleation and Growth

  • Chapter
  • First Online:
Low-Dimensional and Nanostructured Materials and Devices

Part of the book series: NanoScience and Technology ((NANO))

  • 2386 Accesses

Abstract

Graphene electronics is expected to complement the conventional Si technologies. Graphene processing should thus be compatible with the mainstream Si technology: CMOS . Ideally, it should be possible to grow graphene directly on a Si wafer, but this does not work. Large area graphene can be grown on Cu or on Ni, its transfer to silicon must then follow, which is problematic. Researchers try therefore to grow graphene on CMOS compatible substrates, such as on Ge/Si(001) wafers. Ab initio modeling , particularly when used in combination with experimental data, can elucidate the mechanisms that govern the process of nucleation and growth of graphene, and thus provide assistance in the design of experiments and production processes. We overview our results in this context, startig from atomic C deposited on (chemically inert) graphene, through the similar cases of Si deposited on graphene and C deposited on hexagonal boron nitride, and the case of carbon on a non-inert insulator (SiO2-like surface of mica) , up to C atoms and hydrocarbon molecules building graphene on Ge(001) surfaces.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Notes

  1. 1.

    Derived means here “using the same set but taken from Brillouin zone of a larger surface cell”. This is done with caution, as it costs computing time. For example, calculation using the \( \varGamma \) point from the 24 × 24 cell of graphene (this is a fully converged k-point set) requires 10 times more wall time (or 10 times more cores if the same wall time is requested) than the standard calculation done with the \( \varGamma \) point from the 6 × 6 cell (this is a poor set for adsorption energies, but a reasonable one for diffusion barriers). Therefore, the structures are computed using the fundamental k-point set and only in the most interesting cases refined using the fully converged set.

  2. 2.

    This ignores the probability that two ad-atoms find one another; for full treatment, see Fig. 8.5a.

  3. 3.

    Figure 8.5a includes the probability that two ad-atoms find one another on the surface.

  4. 4.

    PMMA is the polymer used during graphene transfer from Cu to the target wafer.

  5. 5.

    The 2D/G ratio is not the only criterion here, and it is not the absolute one. For more discussion, see [10] (the case of MBE graphene on Ge) and references therein.

References

  1. A.K. Geim, Graphene: Status and Prospects. Science 324, 1530–1534 (2009)

    Article  ADS  Google Scholar 

  2. Y.M. Lin, C. Dimitrakopoulos, K.A. Jenkins, D.B. Farmer, H.Y. Chiu, A. Grill, P. Avouris, 100-GHz transistors from wafer-scale epitaxial graphene. Science 327, 662–662 (2010)

    Article  ADS  Google Scholar 

  3. F. Schwierz, Graphene transistors. Nat. Nanotechnol. 5, 487–496 (2010)

    Article  ADS  Google Scholar 

  4. H.C. Kang, H. Karasawa, Y. Miyamoto, H. Handa, T. Suemitsu, M. Suemitsu, T. Otsuji, Epitaxial graphene field-effect transistors on silicon substrates. Solid State Electron. 54, 1010–1014 (2010)

    Article  ADS  Google Scholar 

  5. J. Kedzierski, P.L. Hsu, P. Healey, P.W. Wyatt, C.L. Keast, M. Sprinkle, C. Berger, W.A. de Heer, Epitaxial graphene transistors on SiC substrates. IEEE Trans. Electron. Dev. 55, 2078–2085 (2008)

    Article  ADS  Google Scholar 

  6. K.S. Kim, Y. Zhao, H. Jang, S.Y. Lee, J.M. Kim, K.S. Kim, J.H. Ahn, P. Kim, J.Y. Choi, B.H. Hong, Large-scale pattern growth of graphene films for stretchable transparent electrodes. Nature 457, 706–710 (2009)

    Article  ADS  Google Scholar 

  7. G. Lupina, J. Kitzmann, I. Costina, M. Lukosius, C. Wenger, A. Wolff, S. Vaziri, M. Östling, I. Pasternak, A. Krajewska, W. Strupinski, S. Kataria, A. Gahoi, M.C. Lemme, G. Ruhl, G. Zoth, O. Luxenhofer, W. Mehr, Residual metallic contamination of transferred chemical vapor deposited graphene. ACS Nano 9, 4776–4785 (2015)

    Article  Google Scholar 

  8. A. Malesevic, R. Vitchev, K. Schouteden, A. Volodin, L. Zhang, G. Van Tendeloo, A. Vanhulsel, C. Van Haesendonck, Synthesis of few-layer graphene via microwave PECVD. Nanotechnology 19, 305604 (2008)

    Article  Google Scholar 

  9. G. Wang, M. Zhang, Y. Zhu, G. Ding, D. Jiang, Q. Guo, S. Liu, X. Xie, P.K. Chu, Z. Di, X. Wang, Direct growth of graphene film on germanium substrate. Sci. Rep. 3, 2465 (2013)

    Article  ADS  Google Scholar 

  10. G. Lippert, J. Dabrowski, T. Schroeder, M.A. Schubert, Y. Yamamoto, F. Herziger, J. Maultzsch, J. Baringhaus, C. Tegenkamp, M.C. Asensio, J. Avila, G. Lupina, Graphene grown on Ge(001) from atomic source. Carbon 75, 104–112 (2014)

    Article  Google Scholar 

  11. G. Lupina, J. Kitzmann, M. Lukosius, J. Dabrowski, A. Wolff, W. Mehr, Deposition of thin silicon layers on transferred large area graphene. Appl. Phys. Lett. 103, 263101 (2013)

    Article  ADS  Google Scholar 

  12. F. Driussi, P. Palestri, L. Selmi, Modeling, simulation and design of the vertical graphene base transistor. Microelectron. Eng. 109:338–341; S. Venica, F. Driussi, P. Palestri, D. Esseni, S. Vaziri, L. Selmi (2014) Simulation of DC and RF performance of the graphene base transistor. IEEE Trans. Electron Devices 61, 2570–2576 (2013)

    Google Scholar 

  13. W. Mehr, J. Dabrowski, J.C. Scheytt, G. Lippert, Y.H. Xie, M.C. Lemme, M. Östling, G. Lupina, Vertical graphene base transistor. IEEE Electron Device Lett. 33, 691–693 (2012)

    Article  ADS  Google Scholar 

  14. S. Vaziri, G. Lupina, C. Henkel, A.D. Smith, M. Östling, J. Dabrowski, G. Lippert, W. Mehr, M.C. Lemme, A Graphene-Based Hot Electron Transistor. ACS Nano Lett. 13:1435–1439; Vaziri S, Lupina G, Paussa A, Smith AD, Henkel C, Lippert G, Dabrowski J, Mehr W, Östling M, and Lemme MC (2013) A manufacturable process integration approach for graphene devices. Solid-State Electronics 84, 185–190 (2013)

    Article  ADS  Google Scholar 

  15. J. Dabrowski, G. Lippert, T. Schroeder, G. Lupina, Role of defects in the process of graphene growth on hexagonal boron nitride from atomic carbon. Appl. Phys. Lett. 105, 191610 (2014)

    Article  Google Scholar 

  16. G. Lippert, J. Dabrowski, M.C. Lemme, C. Marcus, O. Seifarth, G. Lupina, Direct graphene growth on insulator. Phys. Status Solidi B 248, 2619–2622 (2011)

    Article  ADS  Google Scholar 

  17. G. Lippert, J. Dabrowski, Y. Yamamoto, F. Herziger, J. Maultzsch, J. Baringhaus, C. Tegenkamp, M.C. Lemme, W. Mehr, G. Lupina, Molecular beam epitaxy of graphene on mica. Phys. Status Solidi B 249, 2305–2312 (2012)

    Article  Google Scholar 

  18. G. Lippert, J. Dabrowski, Y. Yamamoto, F. Herziger, J. Maultzsch, M.C. Lemme, W. Mehr, G. Lupina, Molecular beam growth of micrometer-size graphene on mica. Carbon 52, 40–48 (2013)

    Article  Google Scholar 

  19. P. Giannozzi et al., QUANTUM ESPRESSO: a modular and open-source software project for quantum simulations of materials. J. Phys. Cond. Mat. 21, 395502 (2009)

    Article  Google Scholar 

  20. J.P. Perdew, K. Burke, M. Ernzerhof, Generalized gradient approximation made simple. Phys. Rev. Lett. 77, 3865–3868 (1996)

    Article  ADS  Google Scholar 

  21. G. Henkelman, B.P. Uberuaga, Hannes Jónsson, A climbing image nudged elastic band method for finding saddle points and minimum energy paths. J. Chem. Phys. 113, 9901–9904 (2000)

    Article  ADS  Google Scholar 

  22. H. Jónsson, G. Mills, K.W. Jacobsen, Nudged Elastic Band Method for Finding Minimum Energy Paths of Transitions. in Classical and Quantum Dynamics in Condensed Phase Simulations eds. by B.J. Berne, G. Ciccotti, D.F. Coker (World Scientific, Singapore, 1998), p. 385

    Google Scholar 

  23. C. Ataca, S. Ciraci, Functionalization of BN honeycomb structure by adsorption and substitution of foreign atoms. Phys. Rev. B 82, 165402 (2010)

    Article  ADS  Google Scholar 

  24. N. Berseneva, A. Gulans, A.V. Krasheninnikov, R.M. Nieminen, Electronic structure of boron nitride sheets doped with carbon from first-principles calculations. Phys. Rev. B 87, 035404 (2013)

    Article  ADS  Google Scholar 

  25. A. van de Walle, M. Asta, P.W. Voorhees, First-principles calculation of the effect of strain on the diffusion of Ge adatoms on Si and Ge(001) surfaces. Phys. Rev. B 67, 041308 (2013)

    Article  Google Scholar 

  26. J. Dabrowski, A. Fleszar, G. Lippert, G. Lupina, Ab initio Modeling of Growth of Grapene for Silicon-Compatible Microelectronics, in Proceedings of NIC Symposium, 12–13 February 2014, ed. by K. Binder, G. Mnster, M. Kremer (Jülich, Germany, Forschungszentrum Jülich, Jülich, 2014), p. 207

    Google Scholar 

  27. G. Lippert, J. Dabrowski, W. Mehr, G. Baccarani, A. Gnudi, V. Di Lecce (2015) Low band gap graphene transistor. European patent application 14194150.0

    Google Scholar 

  28. M.C. Asensio, J. Avila, J. Baringhaus, I. Colambo, J. Dabrowski, G. Lippert, G. Lupina (2015) unpublished

    Google Scholar 

Download references

Acknowledgments

The authors wish to dedicate this work to the memory of Prof. Wolfgang Mehr, the inventor and the pioneer of research on graphene base transistors. We thank our IHP colleagues: Yuji Yamamoto for CVD growth of Ge(001) films on Si wafers, Oksana Fursenko for taking AFM images, Markus Schubert for TEM and EDX characterization, Julia Kitzmann for graphene transfer, Thomas Schroeder for discussions, ideas, and encouragement, and Andre Wolff for technology support. Financial support from the European Commission through the GRADE project (No. 317839) and computing time support from the Jülich Supercomputing Center of the John von Neumann Institute for Computing (project hfo06) are gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jarek Dabrowski .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Dabrowski, J., Lippert, G., Lupina, G. (2016). Graphene for Silicon Microelectronics: Ab Initio Modeling of Graphene Nucleation and Growth. In: Ünlü, H., Horing, N.J.M., Dabrowski, J. (eds) Low-Dimensional and Nanostructured Materials and Devices. NanoScience and Technology. Springer, Cham. https://doi.org/10.1007/978-3-319-25340-4_8

Download citation

Publish with us

Policies and ethics