Skip to main content

New Message Authentication Code Based on APN Functions and Stream Ciphers

  • Conference paper
  • First Online:
Network and System Security (NSS 2015)

Part of the book series: Lecture Notes in Computer Science ((LNSC,volume 9408))

Included in the following conference series:

  • 1665 Accesses

Abstract

After the concept of the active wiretapper was proposed, integrity protection became more important than ever before. Therefore, message authentication code, a method that protects the message from being modified in an undetectable way, attracts more attention. In this paper, we propose a new message authentication code based on APN functions and stream ciphers. This new construction has provable security, which proves that the probability of successful substitution forgery attacks against our new message authentication code is upper bounded by a negligible value. We implement our algorithm, and compare its time consumption with the time consumption of EIA1, the message authentication code used in the 4G LTE system. The results show that our algorithm is much faster than EIA1. Moreover, our new construction is resistant to cycling and linear forgery attacks, which can be applied to EIA1.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 3GPP. Specification of The 3GPP Confidentiality and Integrity Algorithms UEA2 & UIA2. Document 1: UEA2 and UIA2 Specification (2006)

    Google Scholar 

  2. Bernstein, D.J.: Stronger security bounds for wegman-carter-shoup authenticators. In: Cramer, R. (ed.) EUROCRYPT 2005. LNCS, vol. 3494, pp. 164–180. Springer, Heidelberg (2005)

    Chapter  Google Scholar 

  3. Carlet, C., Ding, C., Niederreiter, H.: Authentication Schemes from Highly Nonlinear Functions. Designs, Codes and Cryptography 40(1), 71–79 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  4. Chanson, S., Ding, C., Salomaa, A.: Cartesian Authentication Codes from Functions with Optimal Nonlinearity. Theoretical Computer Science 290(3), 1737–1752 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  5. Ding, C., Niederreiter, H.: Systematic Authentication Codes from Highly Nonlinear Functions. IEEE Transactions on Information Theory 50(10), 2421–2428 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  6. Krawczyk, H.: LFSR-based hashing and authentication. In: Desmedt, Y.G. (ed.) CRYPTO 1994. LNCS, vol. 839, pp. 129–139. Springer, Heidelberg (1994)

    Google Scholar 

  7. Krawczyk, H., Canetti, R., Bellare, M.: HMAC: Keyed-hashing for Message Authentication (1997)

    Google Scholar 

  8. Liu, J., Chen, L.: On the Relationships between Perfect Nonlinear Functions and Universal Hash Families. Theoretical Computer Science 513, 85–95 (2013)

    Article  MATH  MathSciNet  Google Scholar 

  9. McGrew, D.A., Viega, J.: The security and performance of the galois/counter mode (GCM) of operation. In: Canteaut, A., Viswanathan, K. (eds.) INDOCRYPT 2004. LNCS, vol. 3348, pp. 343–355. Springer, Heidelberg (2004)

    Chapter  Google Scholar 

  10. Saarinen, M.-J.O.: Cycling attacks on GCM, GHASH and other polynomial MACs and hashes. In: Canteaut, A. (ed.) FSE 2012. LNCS, vol. 7549, pp. 216–225. Springer, Heidelberg (2012)

    Chapter  Google Scholar 

  11. Simmons, G.J.: Authentication theory/coding theory. In: Blakely, G.R., Chaum, D. (eds.) CRYPTO 1984. LNCS, vol. 196, pp. 411–431. Springer, Heidelberg (1985)

    Chapter  Google Scholar 

  12. Stinson, D.R.: Universal Hashing and Authentication Codes. Designs, Codes and Cryptography 4(3), 369–380 (1994)

    Article  MATH  MathSciNet  Google Scholar 

  13. Wu, T., Gong, G.: The weakness of integrity protection for lte. In: Proceedings of The Sixth ACM Conference on Security and Privacy in Wireless and Mobile Ntworks, pp. 79–88. ACM (2013)

    Google Scholar 

  14. Wyner, A.D.: The Wire-tap Channel. The Bell System Technical Journal 54(8), 1355–1387 (1975)

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Teng Wu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this paper

Cite this paper

Wu, T., Gong, G. (2015). New Message Authentication Code Based on APN Functions and Stream Ciphers. In: Qiu, M., Xu, S., Yung, M., Zhang, H. (eds) Network and System Security. NSS 2015. Lecture Notes in Computer Science(), vol 9408. Springer, Cham. https://doi.org/10.1007/978-3-319-25645-0_28

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-25645-0_28

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-25644-3

  • Online ISBN: 978-3-319-25645-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics