Skip to main content

Vision Based Extraction of Dynamic Gait Features Focused on Feet Movement Using RGB Camera

  • Conference paper
  • First Online:
Ambient Intelligence for Health (AmIHEALTH 2015)

Part of the book series: Lecture Notes in Computer Science ((LNISA,volume 9456))

Included in the following conference series:

Abstract

Bipedal gait involves the entire body but some subsystems are decisive for gait while other parts of the body play complementary roles (dynamic balance, harmony of movement, etc.). We have proposed a functional specification of gait. It is based on logical expression format and takes into account only observational kinematic aspects. The specification is open enough that it can be used in other gait analysis problems (rehabilitation, sport, children, etc.).

We have developed a prototype of an extraction system of gait features by analysing image sequences. Prototype is restricted to the analysis of the movement of the feet and it allows to determine the dynamic parameters (heel strike, toe off, stride length and time, etc.) satisfactorily. Experiments have been performed on our own dataset of 17 cases.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Mahoney, F.I., Barthel, D.W.: Functional evaluation: the Barthel Index. Md. State Med. J. 14, 61–65 (1965)

    Google Scholar 

  2. Waltson, J., Fried, L.P.: Frailty and the old man. Med. Clin. North Am. 83, 1173–1194 (1999)

    Article  Google Scholar 

  3. Fried, L.P., Tangen, C.M., Waltson, J., Newman, A.B., et al.: Frailty in older adults: evidence for phenotype. J Gerontol. 56, 146–156 (2001)

    Article  Google Scholar 

  4. Van Lersel, M.: The interplay between gait and cognitive function in elderly people. Ph.D. thesis, Radboud University Nijmegen (2007)

    Google Scholar 

  5. Hausdorff, J.M., Yogev, G., Springer, S., Simon, E.S., Giladi, N.: Walking is more like catching than tapping: gait in the elderly as a complex cognitive task. Exp. Brain Res. 164, 541–548 (2005)

    Article  Google Scholar 

  6. Mulder, T., Zijlstra, W., Geurts, A.: Assessment of motor recovery and decline. Gait Posture 16(2), 198–210 (2002)

    Article  Google Scholar 

  7. Waite, L.M., Grayson, D.A., Piguet, O.: Gait slowing as a predictor of incident dementia: 6-year longitudinal data from the Sydney older persons study. J. Neurol. Sci. 229–230, 89–93 (2005)

    Article  Google Scholar 

  8. Camicioli, R., Howieson, D., Oken, B., et al.: Motor slowing precedes cognitive impairment in the oldest old. Neurology 50, 1496–1498 (1998)

    Article  Google Scholar 

  9. Verghese, J., Lipton, R.B., Hall, C.B., et al.: Abnormality of gait as a predictor of non-Alzheimer’s dementia. N. Engl. J. Med. 347, 1761–1768 (2002)

    Article  Google Scholar 

  10. Verghese, J., Derby, C., Katz, M.J., et al.: High risk neurological gait syn-drome and vascular dementia. J. Neural Transm. 114, 1249–1252 (2007)

    Article  Google Scholar 

  11. Scarmeas, N., Albert, M., Brandt, J., et al.: Motor signs predict poor outcomes in Alzheimer disease. Neurology 64, 1696–1703 (2005)

    Article  Google Scholar 

  12. Zheng, S., Huang, K., Tan, T., Tao, D.: A cascade fusion scheme for gait and cumulative foot pressure image recognition. Pattern Recogn. 45(10), 3603–3610 (2012)

    Article  Google Scholar 

  13. Roy, A., Sural, S., Mukherjee, J.: Gait recognition using pose kinematics and pose energy image. Sig. Process. 92(3), 780–792 (2012)

    Article  Google Scholar 

  14. Roy, A., Sural, S., Mukherjee, J.: A hierarchical method combining gait and phase of motion with spatiotemporal model for person re-identification. Pattern Recogn. Lett. 33(14), 1891–1901 (2012)

    Article  Google Scholar 

  15. Xu, X., McGorry, R.W., Chou, L.-S., Lin, J.-H., Chang, C.-C.: Accuracy of the Microsoft Kinect™ for measuring gait parameters during treadmill walking. Gait Posture. http://dx.doi.org/10.1016/j.gaitpost.2015.05.002. Accessed 13 May 2015 ISSN 0966-6362

  16. Iwashita, Y., Stoica, A., Kurazume, R.: Gait identification using shadow biometrics. Pattern Recogn. Lett. 33(16), 2148–2155 (2012)

    Article  Google Scholar 

  17. Choudhury, S.D., Tjahjadi, T.: Gait recognition based on shape and motion analysis of silhouette contours. Comput. Vis. Image Underst. 117(12), 1770–1785 (2013)

    Article  Google Scholar 

  18. Khan, T., Westin, J., Dougherty, M.: Motion cue analysis for parkinsonian gait recognition. Open Biomed. Eng. J. 7, 1 (2013)

    Article  Google Scholar 

  19. Nixon, M.S., Carter, J.N.: Advances in automatic gait recognition. In: Sixth IEEE International Conference on Automatic Face and Gesture Recognition, 2004, Proceedings, pp. 139–144. IEEE (2004)

    Google Scholar 

  20. Choudhury, S.D., Tjahjadi, T.: Silhouette-based gait recognition using Procrustes shape analysis and elliptic Fourier descriptors. Pattern Recogn. 45(9), 3414–3426 (2012)

    Article  Google Scholar 

  21. Zeng, W., Wang, C., Yang, F.: Silhouette-based gait recognition via deterministic learning. Pattern Recogn. 47(11), 3568–3584 (2014)

    Article  Google Scholar 

  22. Heisenberg, W.: Über den anschaulichen Inhalt der quantentheoretischen Kinematik und Mechanik. Zeitschrift für Physik 43(3–4), 172–198 (1927)

    Article  Google Scholar 

  23. Perry, J., Davids, J.R.: Gait analysis: normal and pathological function. J. Pediatr. Orthop. 12(6), 815 (1992)

    Article  Google Scholar 

  24. García-Chamizo, J.M., Nieto-Hidalgo, M.: Formalización algebraica del método de arriba hacia abajo de diseño tecnológico. http://hdl.handle.net/10045/47233

Download references

Acknowledgement

This research is part of the FRASE MINECO project (TIN2013-47152-C3-2-R) funded by the Ministry of Economy and Competitiveness of Spain.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mario Nieto-Hidalgo .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this paper

Cite this paper

Nieto-Hidalgo, M., Ferrández-Pastor, F.J., Valdivieso-Sarabia, R.J., Mora-Pascual, J., García-Chamizo, J.M. (2015). Vision Based Extraction of Dynamic Gait Features Focused on Feet Movement Using RGB Camera. In: Bravo, J., Hervás, R., Villarreal, V. (eds) Ambient Intelligence for Health. AmIHEALTH 2015. Lecture Notes in Computer Science(), vol 9456. Springer, Cham. https://doi.org/10.1007/978-3-319-26508-7_16

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-26508-7_16

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-26507-0

  • Online ISBN: 978-3-319-26508-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics