Skip to main content

Hierarchical Nearest Neighbor Graphs for Building Perceptual Hierarchies

  • Conference paper
  • First Online:
Neural Information Processing (ICONIP 2015)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 9490))

Included in the following conference series:

Abstract

Humans tend to organize their knowledge into hierarchies, because searches are efficient when proceeding downward in the tree-like structures. Similarly, many autonomous robots also contain some form of hierarchical knowledge. They may learn knowledge from their experiences through interaction with human users. However, it is difficult to find a common ground between robots and humans in a low level experience. Thus, their interaction must take place at the semantic level rather than at the perceptual level, and robots need to organize perceptual experiences into hierarchies for themselves. This paper presents an unsupervised method to build view-based perceptual hierarchies using hierarchical Nearest Neighbor Graphs (hNNGs), which combine most of the interesting features of both Nearest Neighbor Graphs (NNGs) and self-balancing trees. An incremental construction algorithm is developed to build and maintain the perceptual hierarchies. The paper describes the details of the data representations and the algorithms of hNNGs.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    The labels are provided just for evaluation.

References

  1. Austerweil, J.L., Griffiths, T.L.: A nonparametric bayesian framework for constructing flexible feature representations. Psychol. Rev. 120(4), 817 (2013)

    Article  Google Scholar 

  2. Bentley, J.L.: Multidimensional binary search trees used for associative searching. Commun. ACM 18(9), 509–517 (1975)

    Article  MathSciNet  MATH  Google Scholar 

  3. Collet, A., Xiong, B., Gurau, C., Hebert, M., Srinivasa, S.S.: Exploiting domain knowledge for object discovery. In: 2013 IEEE International Conference on Robotics and Automation (ICRA), pp. 2118–2125. IEEE (2013)

    Google Scholar 

  4. Franti, P., Virmajoki, O., Hautamaki, V.: Fast agglomerative clustering using a k-nearest neighbor graph. IEEE Trans. Pattern Anal. Mach. Intell. 28(11), 1875–1881 (2006)

    Article  Google Scholar 

  5. Friedman, J.H., Bentley, J.L., Finkel, R.A.: An algorithm for finding best matches in logarithmic expected time. ACM Trans. Math. Softw. (TOMS) 3(3), 209–226 (1977)

    Article  MATH  Google Scholar 

  6. Guttman, A.: R-trees: A dynamic index structure for spatial searching, vol. 14. ACM (1984)

    Google Scholar 

  7. Hautamäki, V., Kinnunen, T., Fränti, P.: Text-independent speaker recognition using graph matching. Pattern Recogn. Lett. 29(9), 1427–1432 (2008)

    Article  Google Scholar 

  8. Hertzberg, J., Zhang, J., Zhang, L., Rockel, S., Neumann, B., Lehmann, J., Dubba, K.S.R., Cohn, A.G., Saffiotti, A., Pecora, F., Mansouri, M.: The RACE project. KI - Künstliche Intelligenz 28(4), 297–304 (2014). http://dx.doi.org/10.1007/s13218-014-0327-y

    Article  Google Scholar 

  9. Johnson, A., Hebert, M.: Using spin images for efficient object recognition in cluttered 3D scenes. IEEE Trans. Pattern Anal. Mach. Intell. 21(5), 433–449 (1999)

    Article  Google Scholar 

  10. Kasaei, S.H., Oliveira, M., Lim, G.H., Lopes, L.S., Tomé, A.M.: Interactive open-ended learning for 3d object recognition: An approach and experiments. J. Intell. Robotic Syst., 1–17 (2015)

    Google Scholar 

  11. Kriegeskorte, N., Mur, M., Ruff, D.A., Kiani, R., Bodurka, J., Esteky, H., Tanaka, K., Bandettini, P.A.: Matching categorical object representations in inferior temporal cortex of man and monkey. Neuron 60(6), 1126–1141 (2008)

    Article  Google Scholar 

  12. Lai, K., Bo, L., Ren, X., Fox, D.: A large-scale hierarchical multi-view rgb-d object dataset. In: 2011 IEEE International Conference on Robotics and Automation (ICRA), pp. 1817–1824. IEEE (2011)

    Google Scholar 

  13. Lim, G.H., Kim, K.W., Suh, H., Suh, I.H., Beetz, M.: Knowledge-based incremental bayesian learning for object recognition. In: Autonomous Learning Workshop, ICRA (2013)

    Google Scholar 

  14. Lim, G.H., Oliveira, M., Mokhtari Hassanabad, V., Kasaei, S.H., Seabra Lopes, L., Maria Tomé, A.: Interactive teaching and experience extraction for learning about objects and robot activities. In: RO-MAN 2014. IEEE (2014)

    Google Scholar 

  15. Lim, G.H., Suh, I.H., Suh, H.: Ontology-based unified robot knowledge for service robots in indoor environments. IEEE Trans. Syst., Man Cybern., Part A: Syst. Humans 41(3), 492–509 (2011)

    Article  Google Scholar 

  16. Oliveira, M., Lim, G.H., Seabra Lopes, L., Kasaei, S.H., Maria Tomé, A., Chauhan, A.: A perceptual memory system for grounding semantic representations in intelligent service robots. In: IROS 2014. IEEE (2014)

    Google Scholar 

  17. Riesenhuber, M., Poggio, T.: Models of object recognition. Nature Neurosci. 3, 1199–1204 (2000)

    Article  Google Scholar 

  18. Rockel, S., Neumann, B., Zhang, J., Dubba, K.S.R., Cohn, A.G., Konec̆ný, S̆., Mansouri, M., Pecora, F., Saffiotti, A., Günther, M., Stock, S., Hertzberg, J., Tomé, A.M., Pinho, A.J., Lopes, L.S., von Riegen, S., Hotz, L.: An ontology-based multi-level robot architecture for learning from experiences. In: Designing Intelligent Robots: Reintegrating AI II, AAAI Spring Symposium, Stanford, USA, March 2013

    Google Scholar 

  19. Roussopoulos, N., Kelley, S., Vincent, F.: Nearest neighbor queries. In: ACM Sigmod Record. vol. 24, pp. 71–79. ACM (1995)

    Google Scholar 

  20. Seabra Lopes, L., Chauhan, A.: Open-ended category learning for language acquisition. Connection Sci. 20(4), 277–297 (2008)

    Article  Google Scholar 

  21. Sivic, J., Russell, B.C., Zisserman, A., Freeman, W.T., Efros, A.A.: Unsupervised discovery of visual object class hierarchies. In: IEEE Conference on Computer Vision and Pattern Recognition, CVPR 2008, pp. 1–8. IEEE (2008)

    Google Scholar 

  22. Steels, L.: Grounding language through evolutionary language games. In: Steels, L., Hild, M. (eds.) Language Grounding in Robots, pp. 1–22. Springer, US (2012)

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gi Hyun Lim .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this paper

Cite this paper

Lim, G.H., Oliveira, M., Kasaei, S.H., Lopes, L.S. (2015). Hierarchical Nearest Neighbor Graphs for Building Perceptual Hierarchies. In: Arik, S., Huang, T., Lai, W., Liu, Q. (eds) Neural Information Processing. ICONIP 2015. Lecture Notes in Computer Science(), vol 9490. Springer, Cham. https://doi.org/10.1007/978-3-319-26535-3_74

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-26535-3_74

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-26534-6

  • Online ISBN: 978-3-319-26535-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics