Skip to main content

Short Bowel Syndrome: Physiologic Considerations and Nutritional Management

  • Chapter
  • First Online:
Nutritional Management of Inflammatory Bowel Diseases

Abstract

Short bowel syndrome (SBS) refers to a malabsorptive state resulting from loss of intestinal structure and/or function due to congenitally absent, extensively resected, and/or diseased bowel. SBS is typically defined by the presence of <200 cm of functional small intestine, and its management can be divided into phases, some or all of which may require the provision of parenteral nutrition and/or intravenous fluid support to maintain adequate nutrition and hydration. The condition is linked with multiple complications, high utilization of healthcare resources, reduced quality of life, and significant morbidity and mortality. Clinical implications of SBS are influenced by the extent and location of resected bowel, viable length and absorptive capacity of remnant bowel, and small intestinal continuity with the colon. Primary management objectives in SBS include establishing adequate fluid and electrolyte balance, promoting intestinal adaptation, and providing adequate hydration and nutritional (macro- and micro-nutrient) support. Pharmacotherapeutic optimization with frequent reassessments over time can mitigate clinical consequences and maximize intestinal rehabilitation potential. A multidisciplinary approach, involving nutritional, pharmacotherapeutic, psychological, and surgical facets, is paramount in SBS. Healthcare goals include restoring nutritional autonomy, preventing complications, and enhancing quality of life. This chapter addresses the etiology, epidemiology, relevant anatomy and pathophysiology, clinical manifestations, and potential complications of SBS. Hydration and nutritional (macro- and micro-nutrient) management, along with associated care maintenance and quality of life issues, are also reviewed. Pharmacologic therapy will be discussed in the subsequent chapter.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

Ca2+ :

Calcium

CCK:

Cholecystokinin

CD:

Crohn’s disease

EGF:

Epidermal growth factor

GLP:

Glucagon-like peptide

H2O:

Water

IBD:

Inflammatory bowel disease

IF:

Intestinal failure

IV:

Intravenous

MCTs:

Medium chain triglycerides

Mg2+ :

Magnesium

NaCl:

Sodium chloride

NaHCO3 :

Sodium bicarbonate

ORS:

Oral rehydration solution

PN:

Parenteral nutrition

PN/IV:

Parenteral nutrition and/or intravenous

QOL:

Quality of life

SBS:

Short bowel syndrome

SCFA:

Short chain fatty acids

SI:

Small intestine

SIBO:

Small intestinal bacterial overgrowth

TPN:

Total parenteral nutrition

US:

United States

References

  1. Buchman AL, Scolapio J, Fryer J. AGA technical review on short bowel syndrome and intestinal transplantation. Gastroenterology. 2003;124(4):1111–34.

    Article  PubMed  Google Scholar 

  2. O’Keefe SJ, Buchman AL, Fishbein TM, Jeejeebhoy KN, Jeppesen PB, Shaffer J. Short bowel syndrome and intestinal failure: consensus definitions and overview. Clin Gastroenterol Hepatol. 2006;4(1):6–10.

    Article  PubMed  Google Scholar 

  3. Thompson JS. Comparison of massive vs. repeated resection leading to short bowel syndrome. J Gastrointest Surg. 2000;4(1):101–4.

    Article  CAS  PubMed  Google Scholar 

  4. Thompson JS, DiBaise JK, Iyer KR, Yeats M, Sudan DL. Postoperative short bowel syndrome. J Am Coll Surg. 2005;201(1):85–9.

    Article  PubMed  Google Scholar 

  5. American Gastroenterological Association. American Gastroenterological Association medical position statement: short bowel syndrome and intestinal transplantation. Gastroenterology. 2003;124(4):1105–10.

    Article  Google Scholar 

  6. Messing B, Crenn P, Beau P, Boutron-Ruault MC, Rambaud JC, Matuchansky C. Long-term survival and parenteral nutrition dependence in adult patients with the short bowel syndrome. Gastroenterology. 1999;117(5):1043–50.

    Article  CAS  PubMed  Google Scholar 

  7. Buchman A. Short bowel syndrome. In: Feldman M, Friedman LS, Brandt LJ, editors. Sleisenger and Fordtran’s gastrointestinal and liver disease: pathophysiology, diagnosis, management. 9th ed. Philadelphia: Elsevier; 2010. p. 1779–95.

    Chapter  Google Scholar 

  8. Surana R, Quinn FM, Puri P. Short-gut syndrome: intestinal adaptation in a patient with 12 cm of jejunum. J Pediatr Gastroenterol Nutr. 1994;19(2):246–9.

    Article  CAS  PubMed  Google Scholar 

  9. Pironi L, Arends J, Baxter J, Bozzetti F, Pelaez RB, Cuerda C, et al. ESPEN endorsed recommendations. Definition and classification of intestinal failure in adults. Clin Nutr. 2014;34:171–80.

    Article  PubMed  Google Scholar 

  10. ESPEN—Home Artificial Nutrition Working Group, Van Gossum A, Bakker H, De Francesco A, Ladefoged K, Leon-Sanz M, Messing B, et al. Home parenteral nutrition in adults: a multicentre survey in Europe in 1993. Clin Nutr. 1996;15(2):53–9.

    Article  Google Scholar 

  11. Van Gossum A, Bakker H, Bozzetti F, Staun M, Leon-Sanz M, Hebuterne Z, et al. Home parenteral nutrition in adults: a European multicentre survey in 1997. Clin Nutr. 1999;18(3):135–40.

    Article  Google Scholar 

  12. Howard L, Ament M, Fleming CR, Shike M, Steiger E. Current use and clinical outcome of home parenteral and enteral nutrition therapies in the United States. Gastroenterology. 1995;109(2):355–65.

    Article  CAS  PubMed  Google Scholar 

  13. Amiot A, Messing B, Corcos O, Panis Y, Joly F. Determinants of home parenteral nutrition dependence and survival of 268 patients with non-malignant short bowel syndrome. Clin Nutr. 2013;32(3):368–74.

    Article  PubMed  Google Scholar 

  14. Tappenden KA. Pathophysiology of short bowel syndrome: considerations of resected and residual anatomy. JPEN J Parenter Enteral Nutr. 2014;38(1 Suppl):14S–22.

    Article  CAS  PubMed  Google Scholar 

  15. Nightingale J, Woodward JM, Small Bowel and Nutrition Committee of the British Society of Gastroenterology. Guidelines for management of patients with a short bowel. Gut. 2006;55 Suppl 4:iv1–12.

    PubMed  PubMed Central  Google Scholar 

  16. Kahn E, Daum F. Anatomy, histology, embryology, and developmental anomalies of the small and large intestine. In: Feldman M, Friedman LS, Brandt LJ, editors. Sleisenger and Fordtran’s gastrointestinal and liver disease: pathophysiology, diagnosis, management. 9th ed. Philadelphia: Elsevier; 2010. p. 1615–40.

    Chapter  Google Scholar 

  17. Fedorak RN, Bistritz L. Short bowel syndrome. In: Yamada T, editor. Textbook of gastroenterology. 5th ed. Oxford: Blackwell; 2009. p. 1295–321.

    Google Scholar 

  18. Nightingale JM, Lennard-Jones JE, Walker ER, Farthing MJ. Jejunal efflux in short bowel syndrome. Lancet. 1990;336(8718):765–8.

    Article  CAS  PubMed  Google Scholar 

  19. Nightingale JM, Kamm MA, van der Sijp JR, Morris GP, Walker ER, Mather SJ, et al. Disturbed gastric emptying in the short bowel syndrome. Evidence for a “colonic brake”. Gut. 1993;34(9):1171–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Nightingale JM, Kamm MA, van der Sijp JR, Ghatei MA, Bloom SR, Lennard-Jones JE. Gastrointestinal hormones in short bowel syndrome. Peptide YY may be the “colonic brake” to gastric emptying. Gut. 1996;39(2):267–72.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Savage AP, Adrian TE, Carolan G, Chatterjee VK, Bloom SR. Effects of peptide YY (PYY) on mouth to caecum intestinal transit time and on the rate of gastric emptying in healthy volunteers. Gut. 1987;28(2):166–70.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Campos MS, Christensen KK, Clark ED, Schedl HP. Brush border calcium uptake in short-bowel syndrome in rats. Am J Clin Nutr. 1993;57(1):54–8.

    CAS  PubMed  Google Scholar 

  23. Miazza BM, Al-Mukhtar MY, Salmeron M, Ghatei MA, Felce-Dachez M, Filali A, et al. Hyperenteroglucagonaemia and small intestinal mucosal growth after colonic perfusion of glucose in rats. Gut. 1985;26(5):518–24.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Nordgaard I, Hansen BS, Mortensen PB. Importance of colonic support for energy absorption as small-bowel failure proceeds. Am J Clin Nutr. 1996;64(2):222–31.

    CAS  PubMed  Google Scholar 

  25. Nightingale JM, Bartram CI, Lennard-Jones JE. Length of residual small bowel after partial resection: correlation between radiographic and surgical measurements. Gastrointest Radiol. 1991;16(4):305–6.

    Article  CAS  PubMed  Google Scholar 

  26. Shatari T, Clark MA, Lee JR, Keighley MR. Reliability of radiographic measurement of small intestinal length. Colorectal Dis. 2004;6(5):327–9.

    Article  CAS  PubMed  Google Scholar 

  27. Sinha R, Trivedi D, Murphy PD, Fallis S. Small-intestinal length measurement on MR enterography: comparison with in vivo surgical measurement. AJR Am J Roentgenol. 2014;203(3):W274–9.

    Article  PubMed  Google Scholar 

  28. Crenn P, Coudray-Lucas C, Thuillier F, Cynober L, Messing B. Postabsorptive plasma citrulline concentration is a marker of absorptive enterocyte mass and intestinal failure in humans. Gastroenterology. 2000;119(6):1496–505.

    Article  CAS  PubMed  Google Scholar 

  29. Tappenden KA. Intestinal adaptation following resection. JPEN J Parenter Enteral Nutr. 2014;38(1 Suppl):23S–31.

    Article  PubMed  Google Scholar 

  30. Dowling RH, Booth CC. Functional compensation after small-bowel resection in man. Demonstration by direct measurement. Lancet. 1966;2(7455):146–7.

    CAS  PubMed  Google Scholar 

  31. Perry M. Intestinal absorption following small-bowel resection. Ann R Coll Surg Engl. 1975;57(3):139–47.

    CAS  PubMed  PubMed Central  Google Scholar 

  32. Tilson MD. Pathophysiology and treatment of short bowel syndrome. Surg Clin North Am. 1980;60(5):1273–84.

    CAS  PubMed  Google Scholar 

  33. Crenn P, Morin MC, Joly F, Penven S, Thuillier F, Messing B. Net digestive absorption and adaptive hyperphagia in adult short bowel patients. Gut. 2004;53(9):1279–86.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Hill GL, Mair WS, Goligher JC. Impairment of ‘ileostomy adaptation’ in patients after ileal resection. Gut. 1974;15(12):982–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Vegge A, Thymann T, Lund P, Stoll B, Bering SB, Hartmann B, et al. Glucagon-like peptide-2 induces rapid digestive adaptation following intestinal resection in preterm neonates. Am J Physiol Gastrointest Liver Physiol. 2013;305(4):G277–85.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. De Francesco A, Malfi G, Delsedime L, David E, Pera A, Serra R, et al. Histological findings regarding jejunal mucosa in short bowel syndrome. Transplant Proc. 1994;26(3):1455–6.

    PubMed  Google Scholar 

  37. Porus RL. Epithelial hyperplasia following massive small bowel resection in man. Gastroenterology. 1965;48:753–7.

    CAS  PubMed  Google Scholar 

  38. Jeppesen PB, Hartmann B, Thulesen J, Hansen BS, Holst JJ, Poulsen SS, et al. Elevated plasma glucagon-like peptide 1 and 2 concentrations in ileum resected short bowel patients with a preserved colon. Gut. 2000;47(3):370–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Weser E, Babbitt J, Hoban M, Vandeventer A. Intestinal adaptation. Different growth responses to disaccharides compared with monosaccharides in rat small bowel. Gastroenterology. 1986;91(6):1521–7.

    CAS  PubMed  Google Scholar 

  40. Lai HS, Chen WJ, Chen KM, Lee YN. Effects of monomeric and polymeric diets on small intestine following massive resection. Taiwan Yi Xue Hui Za Zhi. 1989;88(10):982–8.

    CAS  PubMed  Google Scholar 

  41. Vanderhoof JA, Park JH, Herrington MK, Adrian TE. Effects of dietary menhaden oil on mucosal adaptation after small bowel resection in rats. Gastroenterology. 1994;106(1):94–9.

    CAS  PubMed  Google Scholar 

  42. Williamson RC. Intestinal adaptation: factors that influence morphology. Scand J Gastroenterol Suppl. 1982;74:21–9.

    CAS  PubMed  Google Scholar 

  43. Feldman EJ, Dowling RH, McNaughton J, Peters TJ. Effects of oral versus intravenous nutrition on intestinal adaptation after small bowel resection in the dog. Gastroenterology. 1976;70(5 Pt.1):712–9.

    CAS  PubMed  Google Scholar 

  44. Buchman AL, Moukarzel AA, Bhuta S, Belle M, Ament ME, Eckhert CD, et al. Parenteral nutrition is associated with intestinal morphologic and functional changes in humans. JPEN J Parenter Enteral Nutr. 1995;19(6):453–60.

    Article  CAS  PubMed  Google Scholar 

  45. Buchman AL, Mestecky J, Moukarzel A, Ament ME. Intestinal immune function is unaffected by parenteral nutrition in man. J Am Coll Nutr. 1995;14(6):656–61.

    Article  CAS  PubMed  Google Scholar 

  46. Sedman PC, MacFie J, Palmer MD, Mitchell CJ, Sagar PM. Preoperative total parenteral nutrition is not associated with mucosal atrophy or bacterial translocation in humans. Br J Surg. 1995;82(12):1663–7.

    Article  CAS  PubMed  Google Scholar 

  47. Heaton KW, Read AE. Gall stones in patients with disorders of the terminal ileum and disturbed bile salt metabolism. Br Med J. 1969;3(5669):494–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Thompson JS. The role of prophylactic cholecystectomy in the short-bowel syndrome. Arch Surg. 1996;131(5):556–9; discussion 559–60.

    Article  CAS  PubMed  Google Scholar 

  49. The colon, the rumen, and D-lactic acidosis. Lancet 1990;336(8715):599–600.

    Google Scholar 

  50. Jeppesen PB, Mortensen PB. Significance of a preserved colon for parenteral energy requirements in patients receiving home parenteral nutrition. Scand J Gastroenterol. 1998;33(11):1175–9.

    Article  CAS  PubMed  Google Scholar 

  51. Matarese LE. Nutrition and fluid optimization for patients with short bowel syndrome. JPEN J Parenter Enteral Nutr. 2013;37(2):161–70.

    Article  CAS  PubMed  Google Scholar 

  52. Joly F, Dray X, Corcos O, Barbot L, Kapel N, Messing B. Tube feeding improves intestinal absorption in short bowel syndrome patients. Gastroenterology. 2009;136(3):824–31.

    Article  PubMed  Google Scholar 

  53. Buchman AL. Use of percutaneous endoscopic gastrostomy or percutaneous endoscopic jejunostomy in short bowel syndrome. Gastrointest Endosc Clin N Am. 2007;17(4):787–94.

    Article  PubMed  Google Scholar 

  54. Chaet MS, Arya G, Ziegler MM, Warner BW. Epidermal growth factor enhances intestinal adaptation after massive small bowel resection. J Pediatr Surg. 1994;29(8):1035–8; discussion 1038–9.

    Article  CAS  PubMed  Google Scholar 

  55. Helmrath MA, Shin CE, Erwin CR, Warner BW. The EGF\EGF-receptor axis modulates enterocyte apoptosis during intestinal adaptation. J Surg Res. 1998;77(1):17–22.

    Article  CAS  PubMed  Google Scholar 

  56. Mashako MN, Cezard JP, Boige N, Chayvialle JA, Bernard C, Navarro J. The effect of artificial feeding on cholestasis, gallbladder sludge and lithiasis in infants: correlation with plasma cholecystokinin levels. Clin Nutr. 1991;10(6):320–7.

    Article  CAS  PubMed  Google Scholar 

  57. Javid PJ, Collier S, Richardson D, Iglesias J, Gura K, Lo C, et al. The role of enteral nutrition in the reversal of parenteral nutrition-associated liver dysfunction in infants. J Pediatr Surg. 2005;40(6):1015–8.

    Article  PubMed  Google Scholar 

  58. Cosnes J, Evard D, Beaugerie L, Gendre JP, Le Quintrec Y. Improvement in protein absorption with a small-peptide-based diet in patients with high jejunostomy. Nutrition. 1992;8(6):406–11.

    CAS  PubMed  Google Scholar 

  59. McIntyre PB, Fitchew M, Lennard-Jones JE. Patients with a high jejunostomy do not need a special diet. Gastroenterology. 1986;91(1):25–33.

    CAS  PubMed  Google Scholar 

  60. Ksiazyk J, Piena M, Kierkus J, Lyszkowska M. Hydrolyzed versus nonhydrolyzed protein diet in short bowel syndrome in children. J Pediatr Gastroenterol Nutr. 2002;35(5):615–8.

    Article  CAS  PubMed  Google Scholar 

  61. Torp N, Rossi M, Troelsen JT, Olsen J, Danielsen EM. Lactase-phlorizin hydrolase and aminopeptidase N are differentially regulated in the small intestine of the pig. Biochem J. 1993;295(Pt 1):177–82.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Estrada G, Krasinski SD, Montgomery RK, Grand RJ, Garcia-Valero J, Lopez-Tejero MD. Quantitative analysis of lactase-phlorizin hydrolase expression in the absorptive enterocytes of newborn rat small intestine. J Cell Physiol. 1996;167(2):341–8.

    Article  CAS  PubMed  Google Scholar 

  63. Sukhotnik I, Gork AS, Chen M, Drongowski RA, Coran AG, Harmon CM. Effect of a high fat diet on lipid absorption and fatty acid transport in a rat model of short bowel syndrome. Pediatr Surg Int. 2003;19(5):385–90.

    Article  PubMed  Google Scholar 

  64. Sukhotnik I, Mor-Vaknin N, Drongowski RA, Miselevich I, Coran AG, Harmon CM. Effect of dietary fat on early morphological intestinal adaptation in a rat with short bowel syndrome. Pediatr Surg Int. 2004;20(6):419–24.

    Article  PubMed  Google Scholar 

  65. Choi PM, Sun RC, Guo J, Erwin CR, Warner BW. High-fat diet enhances villus growth during the adaptation response to massive proximal small bowel resection. J Gastrointest Surg. 2014;18(2):286–94; discussion 294.

    Article  PubMed  PubMed Central  Google Scholar 

  66. Choi PM, Sun RC, Sommovilla J, Diaz-Miron J, Khil J, Erwin CR, et al. The role of enteral fat as a modulator of body composition after small bowel resection. Surgery. 2014;156(2):412–8.

    Article  PubMed  PubMed Central  Google Scholar 

  67. Sukhotnik I, Shiloni E, Krausz MM, Yakirevich E, Sabo E, Mogilner J, et al. Low-fat diet impairs postresection intestinal adaptation in a rat model of short bowel syndrome. J Pediatr Surg. 2003;38(8):1182–7.

    Article  PubMed  Google Scholar 

  68. Woolf GM, Miller C, Kurian R, Jeejeebhoy KN. Diet for patients with a short bowel: high fat or high carbohydrate? Gastroenterology. 1983;84(4):823–8.

    CAS  PubMed  Google Scholar 

  69. Woolf GM, Miller C, Kurian R, Jeejeebhoy KN. Nutritional absorption in short bowel syndrome. Evaluation of fluid, calorie, and divalent cation requirements. Dig Dis Sci. 1987;32(1):8–15.

    Article  CAS  PubMed  Google Scholar 

  70. Ovesen L, Chu R, Howard L. The influence of dietary fat on jejunostomy output in patients with severe short bowel syndrome. Am J Clin Nutr. 1983;38(2):270–7.

    CAS  PubMed  Google Scholar 

  71. Furst T, Bott C, Stein J, Dressman JB. Enteric-coated cholylsarcosine microgranules for the treatment of short bowel syndrome. J Pharm Pharmacol. 2005;57(1):53–60.

    Article  PubMed  Google Scholar 

  72. Heydorn S, Jeppesen PB, Mortensen PB. Bile acid replacement therapy with cholylsarcosine for short-bowel syndrome. Scand J Gastroenterol. 1999;34(8):818–23.

    Article  CAS  PubMed  Google Scholar 

  73. Gruy-Kapral C, Little KH, Fordtran JS, Meziere TL, Hagey LR, Hofmann AF. Conjugated bile acid replacement therapy for short-bowel syndrome. Gastroenterology. 1999;116(1):15–21.

    Article  CAS  PubMed  Google Scholar 

  74. Kapral C, Wewalka F, Praxmarer V, Lenz K, Hofmann AF. Conjugated bile acid replacement therapy in short bowel syndrome patients with a residual colon. Z Gastroenterol. 2004;42(7):583–9.

    Article  CAS  PubMed  Google Scholar 

  75. Nordgaard I. Colon as a digestive organ: the importance of colonic support for energy absorption as small bowel failure proceeds. Dan Med Bull. 1998;45(2):135–56.

    CAS  PubMed  Google Scholar 

  76. Nightingale JM, Lennard-Jones JE, Gertner DJ, Wood SR, Bartram CI. Colonic preservation reduces need for parenteral therapy, increases incidence of renal stones, but does not change high prevalence of gall stones in patients with a short bowel. Gut. 1992;33(11):1493–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Atia A, Girard-Pipau F, Hebuterne X, Spies WG, Guardiola A, Ahn CW, et al. Macronutrient absorption characteristics in humans with short bowel syndrome and jejunocolonic anastomosis: starch is the most important carbohydrate substrate, although pectin supplementation may modestly enhance short chain fatty acid production and fluid absorption. JPEN J Parenter Enteral Nutr. 2011;35(2):229–40.

    Article  PubMed  Google Scholar 

  78. Meier R, Beglinger C, Schneider H, Rowedder A, Gyr K. Effect of a liquid diet with and without soluble fiber supplementation on intestinal transit and cholecystokinin release in volunteers. JPEN J Parenter Enteral Nutr. 1993;17(3):231–5.

    Article  CAS  PubMed  Google Scholar 

  79. Otsuka M, Satchithanandam S, Calvert RJ. Influence of meal distribution of wheat bran on fecal bulk, gastrointestinal transit time and colonic thymidine kinase activity in the rat. J Nutr. 1989;119(4):566–72.

    CAS  PubMed  Google Scholar 

  80. Jeppesen PB, Mortensen PB. The influence of a preserved colon on the absorption of medium chain fat in patients with small bowel resection. Gut. 1998;43(4):478–83.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. O’Keefe SJ, Peterson ME, Fleming CR. Octreotide as an adjunct to home parenteral nutrition in the management of permanent end-jejunostomy syndrome. JPEN J Parenter Enteral Nutr. 1994;18(1):26–34.

    Article  PubMed  Google Scholar 

  82. Lennard-Jones JE. Oral rehydration solutions in short bowel syndrome. Clin Ther. 1990;12(Suppl A):129–37; discussion 138.

    PubMed  Google Scholar 

  83. Davis GR, Santa Ana CA, Morawski SG, Fordtran JS. Permeability characteristics of human jejunum, ileum, proximal colon and distal colon: results of potential difference measurements and unidirectional fluxes. Gastroenterology. 1982;83(4):844–50.

    CAS  PubMed  Google Scholar 

  84. Afzal NA, Addai S, Fagbemi A, Murch S, Thomson M, Heuschkel R. Refeeding syndrome with enteral nutrition in children: a case report, literature review and clinical guidelines. Clin Nutr. 2002;21(6):515–20.

    Article  CAS  PubMed  Google Scholar 

  85. Brooks MJ, Melnik G. The refeeding syndrome: an approach to understanding its complications and preventing its occurrence. Pharmacotherapy. 1995;15(6):713–26.

    CAS  PubMed  Google Scholar 

  86. Hernandez-Aranda JC, Gallo-Chico B, Luna-Cruz ML, Rayon-Gonzalez MI, Flores-Ramirez LA, Ramos Munoz R, et al. Malnutrition and total parenteral nutrition: a cohort study to determine the incidence of refeeding syndrome. Rev Gastroenterol Mex. 1997;62(4):260–5.

    CAS  PubMed  Google Scholar 

  87. Flesher ME, Archer KA, Leslie BD, McCollom RA, Martinka GP. Assessing the metabolic and clinical consequences of early enteral feeding in the malnourished patient. JPEN J Parenter Enteral Nutr. 2005;29(2):108–17.

    Article  PubMed  Google Scholar 

  88. Winkler MF, Smith CE. Clinical, social, and economic impacts of home parenteral nutrition dependence in short bowel syndrome. JPEN J Parenter Enteral Nutr. 2014;38(1 Suppl):32S–7.

    Article  PubMed  Google Scholar 

  89. Pironi L, Goulet O, Buchman A, Messing B, Gabe S, Candusso M, et al. Outcome on home parenteral nutrition for benign intestinal failure: a review of the literature and benchmarking with the European prospective survey of ESPEN. Clin Nutr. 2012;31(6):831–45.

    Article  PubMed  Google Scholar 

  90. Vantini I, Benini L, Bonfante F, Talamini G, Sembenini C, Chiarioni G, et al. Survival rate and prognostic factors in patients with intestinal failure. Dig Liver Dis. 2004;36(1):46–55.

    Article  CAS  PubMed  Google Scholar 

  91. Lloyd DA, Vega R, Bassett P, Forbes A, Gabe SM. Survival and dependence on home parenteral nutrition: experience over a 25-year period in a UK referral centre. Aliment Pharmacol Ther. 2006;24(8):1231–40.

    Article  CAS  PubMed  Google Scholar 

  92. Winkler MF. Quality of life in adult home parenteral nutrition patients. JPEN J Parenter Enteral Nutr. 2005;29(3):162–70.

    Article  PubMed  Google Scholar 

  93. Persoon A, Huisman-de Waal G, Naber TA, Schoonhoven L, Tas T, Sauerwein H, et al. Impact of long-term HPN on daily life in adults. Clin Nutr. 2005;24(2):304–13.

    Article  PubMed  Google Scholar 

  94. Winkler MF, Ross VM, Piamjariyakul U, Gajewski B, Smith CE. Technology dependence in home care: impact on patients and their family caregivers. Nutr Clin Pract. 2006;21(6):544–56.

    Article  PubMed  Google Scholar 

  95. Winkler MF, Wetle T, Smith C, Hagan E, O’Sullivan Maillet J, Touger-Decker R. The meaning of food and eating among home parenteral nutrition-dependent adults with intestinal failure: a qualitative inquiry. J Am Diet Assoc. 2010;110(11):1676–83.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vijay Yajnik M.D., Ph.D. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Marchioni Beery, R.M., Yajnik, V. (2016). Short Bowel Syndrome: Physiologic Considerations and Nutritional Management. In: Ananthakrishnan, A. (eds) Nutritional Management of Inflammatory Bowel Diseases. Springer, Cham. https://doi.org/10.1007/978-3-319-26890-3_10

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-26890-3_10

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-26888-0

  • Online ISBN: 978-3-319-26890-3

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics