Skip to main content

Euclidean Geometry

  • Chapter
  • First Online:
Surfaces in Classical Geometries

Part of the book series: Universitext ((UTX))

  • 2417 Accesses

Abstract

This chapter begins with a standard elementary introduction to the theory of surfaces immersed in Euclidean space R 3, whose Riemannian metric is the standard dot product. Section 4.2 will be review for readers who have studied basic differential geometry of curves and surfaces in Euclidean space. Geometric intuition is used to construct Euclidean frames on a surface. Section 4.3 repeats the exposition, but this time following the frame reduction procedure outlined in Chapter 3 The classical existence and congruence theorems of Bonnet are stated and proved as consequences of the Cartan–Darboux Theorems. A section on tangent and curvature spheres provides needed background for Lie sphere geometry. The Gauss map helps tie together the formalism of Gauss and that of moving frames. We discuss special examples, such as surfaces of revolution, tubes about a space curve, inversions in a sphere, and parallel transforms of a given immersion. These constructions provide many valuable examples throughout the book. The latter two constructions introduce for the first time Möbius, respectively Lie sphere, transformations that are not Euclidean motions. The section on elasticae contains material needed in our introduction of the Willmore problems.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 49.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Bonnet, P.O.: Mémoire sur la théorie des surfaces applicables sur une surface donnée, première partie. J. l’Ecole Polytech. 41, 209–230 (1866)

    Google Scholar 

  2. Bonnet, P.O.: Mémoire sur la théorie des surfaces applicables sur une surface donnée, deuxième partie. J. l’Ecole Polytech. 42, 1–151 (1867)

    Google Scholar 

  3. Bryant, R.L., Griffiths, P.: Reduction for constrained variational problems and \(\int \frac{1} {2}k^{2}\,ds\). Am. J. Math. 108(3), 525–570 (1986). doi:10.2307/2374654. http://www.dx.doi.org/10.2307/2374654

  4. Calini, A., Ivey, T.: Bäcklund transformations and knots of constant torsion. J. Knot Theory Ramif. 7(6), 719–746 (1998). doi:10.1142/S0218216598000383. http://www.dx.doi.org/10.1142/S0218216598000383

    Google Scholar 

  5. Catalan, E.C.: Sur les surfaces réglés dont l’aire est un minimum. J. Math. Pure Appl. 7, 203–211 (1842)

    Google Scholar 

  6. Chern, S.S.: An elementary proof of the existence of isothermal parameters on a surface. Proc. Am. Math. Soc. 6, 771–782 (1955)

    Article  MathSciNet  MATH  Google Scholar 

  7. Chern, S.S.: Complex Manifolds Without Potential Theory (With an Appendix on the Geometry of Characteristic Classes). Universitext, 2nd edn. Springer, New York (1995).

    Google Scholar 

  8. Cieśliński, J.: The Darboux-Bianchi transformation for isothermic surfaces. Classical results versus the soliton approach. Differ. Geom. Appl. 7(1), 1–28 (1997). doi:10.1016/S0926-2245(97)00002-8. http://www.dx.doi.org.libproxy.wustl.edu/10.1016/S0926-2245(97)00002-8

    Google Scholar 

  9. Darboux, G.: Sur les surfaces isothermiques. C. R. Acad. Sci. Paris 128, 1299–1305 (1899)

    MathSciNet  MATH  Google Scholar 

  10. Dierkes, U., Hildebrandt, S., Küster, A., Wohlrab, O.: Minimal Surfaces, I: Boundary Value Problems. Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], vol. 295. Springer, Berlin (1992)

    Google Scholar 

  11. Eells, J.: The surfaces of Delaunay. Math. Intell. 9(1), 53–57 (1987). doi:10.1007/BF03023575. http://www.dx.doi.org/10.1007/BF03023575

    Google Scholar 

  12. Gauss, C.F.: General Investigations of Curved Surfaces. Raven Press, Hewlett (1965)

    MATH  Google Scholar 

  13. Germain, S.: Recherches sur la Théorie des Surfaces Élastiques. Courcier, Paris (1821)

    Google Scholar 

  14. Griffiths, P.A.: Exterior Differential Systems and the Calculus of Variations. Progress in Mathematics, vol. 25. Birkhäuser, Boston (1983)

    Google Scholar 

  15. Hertrich-Jeromin, U., Pinkall, U.: Ein Beweis der Willmoreschen Vermutung für Kanaltori. J. Reine Angew. Math. 430, 21–34 (1992). doi:10.1515/crll.1992.430.21. http://www.dx.doi.org.libproxy.wustl.edu/10.1515/crll.1992.430.21

  16. Langer, J., Singer, D.A.: The total squared curvature of closed curves. J. Differ. Geom. 20(1), 1–22 (1984)

    MathSciNet  MATH  Google Scholar 

  17. Langer, J., Singer, D.A.: Lagrangian aspects of the Kirchhoff elastic rod. SIAM Rev. 38(4), 605–618 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  18. Lee, J.M.: Introduction to Smooth Manifolds. Graduate Texts in Mathematics, vol. 218. Springer, New York (2003)

    Google Scholar 

  19. Levien, R.: The elastica: a mathematical history. http://levien.com/phd/elastica_hist.pdf (2008)

  20. Marques, F.C., Neves, A.: Min-max theory and the Willmore conjecture. Ann. Math. (2) 179(2), 683–782 (2014). doi:10.4007/annals.2014.179.2.6. http://www.dx.doi.org/10.4007/annals.2014.179.2.6

    Google Scholar 

  21. Munkres, J.R.: Topology, 2nd edn. Prentice Hall, Upper Saddle River (2000)

    MATH  Google Scholar 

  22. Pinkall, U.: Hopf tori in S 3. Invent. Math. 81(2), 379–386 (1985). doi:10.1007/BF01389060. http://www.dx.doi.org.libproxy.wustl.edu/10.1007/BF01389060

  23. Shepherd, M.D.: Line congruences as surfaces in the space of lines. Differ. Geom. Appl. 10(1), 1–26 (1999). doi:10.1016/S0926-2245(98)00025-4. http://www.dx.doi.org/10.1016/S0926-2245(98)00025-4

    Google Scholar 

  24. Shiohama, K., Takagi, R.: A characterization of a standard torus in E 3. J. Differ. Geom. 4, 477–485 (1970)

    MathSciNet  MATH  Google Scholar 

  25. Thomsen, G.: Über konforme Geometrie I: Grundlagen der konformen Flächentheorie. Abh. Math. Sem. Hamburg 3, 31–56 (1924)

    Article  MathSciNet  MATH  Google Scholar 

  26. Truesdell, C.A.: The influence of elasticity on analysis: the classic heritage. Bull. Am. Math. Soc. (N.S.) 9(3), 293–310 (1983). doi:10.1090/S0273-0979-1983-15187-X. http://www.dx.doi.org/10.1090/S0273-0979-1983-15187-X

    Google Scholar 

  27. White, J.H.: A global invariant of conformal mappings in space. Proc. Am. Math. Soc. 38, 162–164 (1973)

    Article  MathSciNet  MATH  Google Scholar 

  28. Willmore, T.J.: Note on embedded surfaces. An. Şti. Univ. “Al. I. Cuza” Iaşi Secţ. I a Mat. (N.S.) 11B, 493–496 (1965)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Jensen, G.R., Musso, E., Nicolodi, L. (2016). Euclidean Geometry. In: Surfaces in Classical Geometries. Universitext. Springer, Cham. https://doi.org/10.1007/978-3-319-27076-0_4

Download citation

Publish with us

Policies and ethics