Skip to main content

Smooth Symbolic Regression: Transformation of Symbolic Regression into a Real-Valued Optimization Problem

  • Conference paper
  • First Online:
Computer Aided Systems Theory – EUROCAST 2015 (EUROCAST 2015)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 9520))

Included in the following conference series:

Abstract

The typical methods for symbolic regression produce rather abrupt changes in solution candidates. In this work, we have tried to transform symbolic regression from an optimization problem, with a landscape that is so rugged that typical analysis methods do not produce meaningful results, to one that can be compared to typical and very smooth real-valued problems. While the ruggedness might not interfere with the performance of optimization, it restricts the possibilities of analysis. Here, we have explored different aspects of a transformation and propose a simple procedure to create real-valued optimization problems from symbolic regression problems.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Borg, I., Groenen, P.: Modern Multidimensional Scaling: Theory and Applications. Springer, New York (2005)

    MATH  Google Scholar 

  2. Chicano, F., Whitley, L.D., Alba, E., Luna, F.: Elementary landscape decomposition of the frequency assignment problem. Theoret. Comput. Sci. 412, 6002–6019 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  3. Cortes, C., Vapnik, V.: Support-vector networks. Mach. Learn. 20(3), 273–297 (1995)

    MATH  Google Scholar 

  4. Deng, L., Yu, D.: Deep Learning: Methods and Applications, Foundations and Trens in Signal Processing, vol. 7. Now Publishers Inc., Hanover (2013)

    Google Scholar 

  5. Freedman, D.A.: Statistical Models: Theory and Practice. Cambridge University Press, Cambridge (2009)

    Book  MATH  Google Scholar 

  6. Hansen, N.: The CMA evolution strategy: a comparing review (chap.). In: Lozano, J.A., Larrañaga, P., Inza, I., Bengoetxea, E. (eds.) Towards a New Evolutionary Computation: Advances on Estimation of Distribution Algorithms. STUDFUZZ, vol. 192, pp. 75–102. Springer, Berlin (2006)

    Chapter  Google Scholar 

  7. Hordijk, W.: A measure of landscapes. Evol. Comput. 4(4), 335–360 (1996)

    Article  Google Scholar 

  8. Jones, T.: Evolutionary algorithms, fitness landscapes and search. Ph.D. thesis, University of New Mexico, Albuquerque, New Mexico (1995)

    Google Scholar 

  9. Keijzer, M.: Improving symbolic regression with interval arithmetic and linear scaling. In: Ryan, C., Soule, T., Keijzer, M., Tsang, E.P.K., Poli, R., Costa, E. (eds.) EuroGP 2003. LNCS, vol. 2610, pp. 70–82. Springer, Heidelberg (2003)

    Chapter  Google Scholar 

  10. Kommenda, M., Kronberger, G., Winkler, S., Affenzeller, M., Wagner, S.: Effects of constant optimization by nonlinear least squares minimization in symbolic regression. In: GECCO 2013 Companion: Proceeding of the Fifteenth Annual Conference Companion on Genetic and Evolutionary Computation Conference Companion, pp. 1121–1128. ACM, Amsterdam, The Netherlands (2013)

    Google Scholar 

  11. Kotanchek, M., Smits, G., Vladislavleva, E.: Trustable symbolic regression models: using ensembles, interval arithmetic and pareto fronts to develop robust and trust-aware models (Chap. 12). In: Riolo, R.L., Soule, T., Worzel, B. (eds.) Genetic Programming Theory and Practice V, pp. 201–220. Genetic and Evolutionary Computation, Springer (2007)

    Google Scholar 

  12. Koza, J.R.: Genetic Programming: On the Programming of Computers by Means of Natural Selection. MIT Press, Cambridge (1992)

    MATH  Google Scholar 

  13. Langdon, W.B., Banzhaf, W.: Repeated patterns in genetic programming. Nat. Comput. 7(4), 589–613 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  14. McConaghy, T.: FFX: fast, scalable, deterministic symbolic regression technology. In: Riolo, R., Vladislavleva, E., Moore, J.H. (eds.) Genetic Programming Theory and Practice IX, pp. 235–260. Springer, New York (2011)

    Google Scholar 

  15. Nelder, J., Wedderburn, R.: Generalized linear models. J. Roy. Stat. Soc. Ser. A (General) 135(3), 370–384 (1972)

    Article  Google Scholar 

  16. Rosenblatt, F.: The perceptron: a probabilistic model for information storage and organization in the brain. Psychol. Rev. 65(6), 386–408 (1958)

    Article  MathSciNet  Google Scholar 

  17. Stadler, P.F.: Linear operators on correlated landscapes. J. Phys. I France 4, 681–696 (1994)

    Article  Google Scholar 

  18. Stadler, P., Wagner, G.: The algebraic theory of recombination spaces. Evol. Comp. 5, 241–275 (1998)

    Article  Google Scholar 

  19. Vassilev, V.K., Fogarty, T.C., Miller, J.F.: Information characteristics and the structure of landscapes. Evol. Comput. 8(1), 31–60 (2000)

    Article  Google Scholar 

  20. Vladislavleva, E.J., Smits, G.F., Hertog, D.D.: Order of nonlinearity as a complexity measure for models generated by symbolic regression via pareto genetic programming. IEEE Trans. Evol. Comput. 13(2), 333–349 (2009)

    Article  Google Scholar 

  21. Wagner, S.: Heuristic optimization software systems - modeling of heuristic optimization algorithms in the heuristicLab software environment. Ph.D. thesis, Johannes Kepler University, Linz, Austria (2009)

    Google Scholar 

  22. Weinberger, E.: Correlated and uncorrelated fitness landscapes and how to tell the difference. Biol. Cybern. 63(5), 325–336 (1990)

    Article  MATH  Google Scholar 

  23. Worm, T., Chiu, K.: Prioritized grammar enumeration: symbolic regression by dynamic programming. In: GECCO, pp. 1021–1028 (2013)

    Google Scholar 

Download references

Acknowledgments

The work described in this paper was done within the COMET Project Heuristic Optimization in Production and Logistics (HOPL), #843532 funded by the Austrian Research Promotion Agency (FFG).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Erik Pitzer .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this paper

Cite this paper

Pitzer, E., Kronberger, G. (2015). Smooth Symbolic Regression: Transformation of Symbolic Regression into a Real-Valued Optimization Problem. In: Moreno-Díaz, R., Pichler, F., Quesada-Arencibia, A. (eds) Computer Aided Systems Theory – EUROCAST 2015. EUROCAST 2015. Lecture Notes in Computer Science(), vol 9520. Springer, Cham. https://doi.org/10.1007/978-3-319-27340-2_47

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-27340-2_47

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-27339-6

  • Online ISBN: 978-3-319-27340-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics