Skip to main content

Aerogel Plasters for Building Energy Efficiency

  • Chapter
  • First Online:
Nano and Biotech Based Materials for Energy Building Efficiency

Abstract

Nowadays in many countries, the building sector is the largest energy consumer and one of the best ways to reduce energy demand of buildings is the reduction in heat losses through the envelope. In this scenario, insulating materials with aerogels have growing interest and new applications such as insulating aerogel-based renderings are in development. This chapter deals with the analysis of superinsulating applications for building envelope such as aerogel-incorporated concrete- and aerogel-based renders. After an overall analysis of the market trend for these innovative systems, the rendering compositions, the physics, thermal, acoustic, and hygrothermal properties of aerogel-based renders are discussed. In situ applications of the new developed render are analyzed and the potential of the investigated materials is highlighted, by considering experimental measurements in Sect. 2.4. Finally, a comparison with traditional solutions and the future trends are considered.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Achard P, Rigacci A, Echantillac T, Bellet A, Aulagnier M, Daubresse A (2011) Enduit isolant Ă  base de xerogel de silice. WIPO Patent WO/083174

    Google Scholar 

  • Aspen Aerogels (2012) Case study: aerogel interior wall insulation reduces U-Values by 44 %, lowers energy use and carbon emissions. Retrieved from: http://www.aerogel.com/markets/ Case_Study_Interior_Wall_web.pdf. Accessed June 2015

  • Barbero S, Dutto M, Ferrua C, Pereno A (2014) Analysis on existent thermal insulating plasters towards innovative applications: evaluation methodology for a real cost-performance comparison. Energy Build 77:40–47

    Google Scholar 

  • Buratti C, Moretti E (2013) Chapter 10—silica nanogel for energy-efficient windows. In: Torgal FP, Diamanti MV, Nazari A, Granqvist CG (eds) Nanotechnology in eco-efficient construction. Woodhead Publishing Limited, Cambridge, pp 207–235. ISBN:9780857095442, doi:10.1533/9780857098832.2.207

    Google Scholar 

  • Buratti C, Moretti E (2014) Chapter 20—nanogel windows. In: Torgal FP, Mistretta M, Kaklauskas A, Granqvist CG, Cabeza LF (eds) Nearly zero energy building refurbishment: a multidisciplinary approach. Springer-Verlag London Ltd. doi:10.1007/978-1-4471-5523-2_20

    Google Scholar 

  • Buratti C, Moretti E, Belloni E (2012) The influence of glazing systems on energy performance of non-residential buildings. In: Proceedings of the 25th international conference on efficiency, cost, optimization and simulation of energy conversion systems and processes, ECOS 2012, 26–29 June 2012. Perugia, Italy, pp 281–294, 206-1–206-14

    Google Scholar 

  • Buratti C, Moretti E, Belloni E, Agosti F (2014) Development of innovative aerogel based plasters: preliminary thermal and acoustic performance evaluation. Sustainability 6:5839–5852. doi:10.3390/su6095839

    Google Scholar 

  • Buratti C, Moretti E, Belloni E (2016) Nanogel windows for energy building efficiency. In: Pacheco Torgal F, Buratti C, Kalaiselvam S, Granqvist C-G, Ivanov V (eds) Nano and biotech based materials for energy building efficiency. Springer International Publishing 2016. ISBN: 978-3-319-27503-1

    Google Scholar 

  • Cotana F, Buratti C, Moretti E, Belloni E (2013) Unsteady simulation of energy performance and thermal comfort in non-residential buildings. Build Environ 59:482–491

    Google Scholar 

  • Cotana F, Pisello AL, Moretti E, Buratti C (2014) Multipurpose characterization of glazing systems with silica aerogel: in-field experimental analysis of thermal-energy, lighting and acoustic performance. Build Environ 81:92–102. doi:10.1016/j.buildenv.2014.06.014

    Google Scholar 

  • EMPA material science and technology (2015) http://www.empa.ch//. Accessed 18 June 2015

  • Fickler S, Milow B, Ratke L, Schnellenbach-Held M, Welsch T (2015) Development of high performance aerogel concrete. In: 6th international building physics conference, IBPC 2015, Turin, 14–17 June 2015

    Google Scholar 

  • Filate SS (2014) Investigation of an energy refurbishment concept for office building using Nanogel®Aerogel insulation plaster and replaced windows by building simulation. Master Programme in Energy Technology, Uppsala Universitet, Oct 2014

    Google Scholar 

  • Fixit, Fixit 222 Aerogel Hochleistungsdämmputz (2015) Available at: http://www.fixit.ch/Home/Produkte/Restaurierungs-und-Sanierungsprodukte/Aerogel-Hochleistungsdaemmputz/Fixit-222-Aerogel-Hochleistungsdaemmputz/(language)/ger-DE-9. Accessed 20 June 2015

  • Gao T, Jelle BP, Gustavsen A, Jacobsen S (2014) Aerogel-incorporated concrete: an experimental study. Constr Build Mater 52:130–136

    Google Scholar 

  • Ghazi Wakili K, Stahl Th, Heiduk E, Schuss M, Vonbank R, Pont U, Sustr C, Wolosiuk D, Mahdavi A (2015) High performance aerogel containing plaster for historic buildings with structured façades. In: 6th international building physics conference, IBPC 2015, Turin, 14–17 June 2015

    Google Scholar 

  • HIPIN (2015) High performance insulation based on nanostructure encapsulation of air. Available at: http://www.hipin.eu. Accessed 27 June 2015

  • Huang L (2012) Feasibility study of using silica aerogel as insulation for buildings. Master of Science thesis, KTH School of Industrial Engineering and Management, Stockholm, Sweden

    Google Scholar 

  • Ibrahim M, Biwole PH, Achard P, Wurtz E (2014a) Aerogel-based coating for energy-efficient building envelopes. In: 9th international energy forum on advanced building skins, Bressanone, Italy, Oct 2014. Proceedings of energy forum on advanced building skins, pp 753–774 <hal-01112594>

    Google Scholar 

  • Ibrahim M, Biwole PH, Achard P, Wurtz E (2014b) A study on the thermal performance of exterior walls covered with a recently patented silica-aerogel-based insulating coating. Build Environ 81:112–122

    Google Scholar 

  • Ibrahim M, Wurtz E, Biwole PH, Achard P, Sallee H (2014c) Hygrothermal performance of exterior walls covered with aerogel-based insulating rendering. Energy Build 84:241–251

    Google Scholar 

  • Ibrahim M, Biwole PH, Achard P, Wurtz E (2015) Aerogel-based materials for improving the building envelope’s thermal behavior: a brief review with a focus on a new aerogel-based rendering. In: Sharma A, Kar SK (eds) Energy sustainability through green energy. Green Energy and Technology, Springer India 2015. doi:10.1007/978-81-322-2337-5_7

    Google Scholar 

  • ISO 10534-2 (1998) Acoustics-determination of sound absorption coefficient and impedance in impedance tubes-part 2: transfer-function method. ISO, Geneva, Switzerland

    Google Scholar 

  • Kalnæs SE, Jelle BP (2015) Phase change materials and products for building applications: a state-of-the-art review and future research opportunities. Energy Build 94:150–176

    Google Scholar 

  • Kiliç A, AtiĹź CD, YaĹźar E, Ă–zcan F (2003) High-strength lightweight concrete made with scoria aggregate containing mineral admixtures. Cem Concr Res 33:1595–1599

    Google Scholar 

  • Kim S, Seo J, Cha J, Kim S (2013) Chemical retreating for gel-typed aerogel and insulation performance of cement containing aerogel. Constr Build Mater 40:501–505

    Google Scholar 

  • Krauss G (1985) Etude experimentale des transferts de chaleur entre un batiment et son environment: conception, realization, instrumentation d’une cellue test. PhD thesis, University P. & M. Curie, Paris

    Google Scholar 

  • Moretti E, Zinzi M, Belloni E (2014) Polycarbonate panels for buildings: experimental investigation of thermal and optical performance. Energy Build 70:23–35. doi:10.1016/j.enbuild.2013.11.045

    Google Scholar 

  • Naturalcalk-Tillica (2015) Available at: http://www.naturalcalk.com/. Accessed 29 June 2015

  • Ratke L (2008) Herstellung und Eigenschaften eines neuen Leichtbetons: Aerogelbeton. Beton- und Stahlbetonbau 103:236–243

    Google Scholar 

  • Röfix, Fixit Group (2015) Available at: http://www.roefix.it/Prodotti/Risanamento-Restauro-Bioedilizia/Bioedilizia/FIXIT-222-Aerogel-Intonaco-altamente-isolante-Intonaco-termoisolante-nel-sistema-ROeFIX-Aerogel. Accessed 29 June 2015

  • Serina Ng, Jelle BP, Sandberg LIC, Gao T, Wallevik OH (2015) Experimental investigations of aerogel-incorporated ultra-high performance concrete. Constr Build Mater 77:307–316

    Google Scholar 

  • Stahl Th, Brunner S, Zimmermann M, Ghazi Wakili K (2012) Thermo-hygric properties of a newly developed aerogel based insulation rendering for both exterior and interior applications. Energy Build 44:114–117

    Google Scholar 

  • Tabares-Velasco PC, Christensen C, Bianchi M (2012) Verification and validation of EnergyPlus phase change material model for opaque wall assemblies. Build Environ 54:186–196

    Google Scholar 

  • UNI 10351 (1994) Materiali da costruzione. ConduttivitĂ  termica e permeabilitĂ  al vapore; Ente Nazionale Italianodi Unificazione (UNI): Milan, Italy, 1994 (In Italian)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to C. Buratti .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Buratti, C., Moretti, E., Belloni, E. (2016). Aerogel Plasters for Building Energy Efficiency. In: Pacheco Torgal, F., Buratti, C., Kalaiselvam, S., Granqvist, CG., Ivanov, V. (eds) Nano and Biotech Based Materials for Energy Building Efficiency. Springer, Cham. https://doi.org/10.1007/978-3-319-27505-5_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-27505-5_2

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-27503-1

  • Online ISBN: 978-3-319-27505-5

  • eBook Packages: EnergyEnergy (R0)

Publish with us

Policies and ethics