Skip to main content

Development of Neural Activity in the Enteric Nervous System: Similarities and Differences to Other Parts of the Nervous System

  • Chapter
  • First Online:
The Enteric Nervous System

Part of the book series: Advances in Experimental Medicine and Biology ((ANS,volume 891))

Abstract

All the neurons and glia of the enteric nervous system (ENS) arise from neural crest-derived cells that migrate into the gastrointestinal (GI) tract during development (Yntema and Hammond 1954; Le Douarin and Teillet 1973). Most of the ENS originates from vagal neural crest cells (NCCs), which arise from the caudal hindbrain region of the neural tube, adjacent to somites 1–7. In the developing mouse, vagal NCCs migrate into the developing oesophagus and stomach at embryonic day (E)9.5, enter the small intestine at E10.5, and colonise the developing GI tract in a rostral-to-caudal wave, reaching the anal end of the colon at E14.5 (Serbedzija et al. 1991; Kapur et al. 1992; Anderson et al. 2006). Recent evidence indicates that there is also trans-mesenteric migration of vagal NCCs, where some NCCs leave the small intestine and migrate directly across the mesentery into the colon (Nishiyama et al. 2012). Sacral NCCs also contribute to a small population of neurons and glia in the colon (Burns and Le Douarin 1998; Wang et al. 2011).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Anderson RB, Stewart AL, Young HM (2006) Phenotypes of neural-crest-derived cells in vagal and sacral pathways. Cell Tissue Res 323:11–25

    Article  CAS  PubMed  Google Scholar 

  • Arcangeli A, Rosati B, Cherubini A, Crociani O, Fontana L, Ziller C, Wanke E, Olivotto M (1997) HERG- and IRK-like inward rectifier currents are sequentially expressed during neuronal development of neural crest cells and their derivatives. Eur J Neurosci 9:2596–2604

    Article  CAS  PubMed  Google Scholar 

  • Baccaglini PI, Spitzer NC (1977) Developmental changes in the inward current of the action potential of Rohon-Beard neurones. J Physiol 271:93–117

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bader CR, Bertrand D, Kato AC (1983a) Membrane currents in a developing parasympathetic ganglion. Dev Biol 98:515–519

    Article  CAS  PubMed  Google Scholar 

  • Bader CR, Bertrand D, Dupin E, Kato AC (1983b) Development of electrical membrane properties in cultured avian neural crest. Nature 305:808–810

    Article  CAS  PubMed  Google Scholar 

  • Bader CR, Bertrand D, Dupin E (1985) Voltage-dependent potassium currents in developing neurones from quail mesencephalic neural crest. J Physiol 366:129–151

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Baetge G, Gershon MD (1989) Transient catecholaminergic (TC) cells in the vagus nerves and bowel of fetal mice: relationship to the development of enteric neurons. Dev Biol 132:189–211

    Article  CAS  PubMed  Google Scholar 

  • Baetge G, Pintar JE, Gershon MD (1990) Transiently catecholaminergic (TC) cells in the bowel of the fetal rat: precursors of noncatecholaminergic enteric neurons. Dev Biol 141:353–380

    Article  CAS  PubMed  Google Scholar 

  • Ben-Ari Y, Spitzer NC (2010) Phenotypic checkpoints regulate neuronal development. Trends Neurosci 33:485–492

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Black JA, Waxman SG (2013) Noncanonical roles of voltage-gated sodium channels. Neuron 80:280–291

    Article  CAS  PubMed  Google Scholar 

  • Blackiston DJ, McLaughlin KA, Levin M (2009) Bioelectric controls of cell proliferation Ion channels, membrane voltage and the cell cycle. Cell Cycle 8:3527–3536

    Article  CAS  PubMed  Google Scholar 

  • Boesmans W, Martens MA, Weltens N, Hao MM, Tack J, Cirillo C, Van den Berghe P (2013) Imaging neuron-glia interactions in the enteric nervous system. Front Cell Neurosci 7:183

    Article  PubMed  PubMed Central  Google Scholar 

  • Boisseau S, Simonneau M (1989) Mammalian neuronal differentiation: early expression of a neuronal phenotype from mouse neural crest cells in a chemically defined culture medium. Development 106:665–674

    CAS  PubMed  Google Scholar 

  • Bornstein JC, Furness JB, Kunze WAA (1994) Electrophysiological characterization of myenteric neurons: how do classification schemes relate? J Auton Nerv Syst 48:1–15

    Article  CAS  PubMed  Google Scholar 

  • Broussard DL, Bannerman PGC, Tang CM, Hardy M, Pleasure D (1993) Electrophysiologic and molecular properties of cultured enteric glia. J Neurosci Res 34:24–31

    Article  CAS  PubMed  Google Scholar 

  • Burns AJ, Le Douarin NM (1998) The sacral neural crest contributes neurons and glia to the post-umbilical gut: spatiotemporal analysis of the development of the enteric nervous system. Development 125:4335–4347

    CAS  PubMed  Google Scholar 

  • Carey MB, Matsumoto SG (1999) Spontaneous calcium transients are required for neuronal differentiation of murine neural crest. Dev Biol 215:298–313

    Article  CAS  PubMed  Google Scholar 

  • Carey MB, Matsumoto SG (2000) Calcium transient activity in cultured murine neural crest cells is regulated at the IP3 receptor. Brain Res 862:201–210

    Article  CAS  PubMed  Google Scholar 

  • Conner PJ, Focke PJ, Noden DM, Epstein ML (2003) Appearance of neurons and glia with respect to the wavefront during colonization of the avian gut by neural crest cells. Dev Dyn 226:91–98

    Article  CAS  PubMed  Google Scholar 

  • Fairman CL, Clagettdame M, Lennon VA, Epstein ML (1995) Appearance of neurons in the developing chick gut. Dev Dyn 204:192–201

    Article  CAS  PubMed  Google Scholar 

  • Foong JPP, Nguyen TV, Furness JB, Bornstein JC, Young HM (2012) Myenteric neurons of the mouse small intestine undergo significant electrophysiological and morphological changes during postnatal development. J Physiol 590:2375–2390

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fry M (2006) Developmental expression of Na+ currents in mouse Purkinje neurons. Eur J Neurosci 24:2557–2566

    Article  PubMed  Google Scholar 

  • Furness JB (2006) The enteric nervous system. Blackwell, Oxford, UK

    Google Scholar 

  • Galligan JJ, Tatsumi H, Shen KZ, Surprenant A, North RA (1990) Cation current activated by hyperpolarization (Ih) in guinea pig enteric neurons. Am J Physiol 259:G966–G972

    CAS  PubMed  Google Scholar 

  • Gao BX, Ziskind-Conhaim L (1998) Development of ionic currents underlying changes in action potential waveforms in rat spinal motoneurons. J Neurophysiol 80:3047–3061

    CAS  PubMed  Google Scholar 

  • Gomes P, Chevalier J, Boesmans W, Roosen L, Van den Abbeel V, Neunlist M, Tack J, Van den Berghe P (2009) ATP-dependent paracrine communication between enteric neurons and glia in a primary cell culture derived from embryonic mice. Neurogastroenterol Motil 21:870–e862

    Article  CAS  PubMed  Google Scholar 

  • Gottmann K, Dietzel ID, Lux HD, Huck S, Rohrer H (1988) Development of inward currents in chick sensory and autonomic neuronal precursor cells in culture. J Neurosci 8:3722–3732

    CAS  PubMed  Google Scholar 

  • Gulbransen BD, Sharkey KA (2012) Novel functional roles for enteric glia in the gastrointestinal tract. Nat Rev Gastroenterol Hepatol 9:625–632

    Article  CAS  PubMed  Google Scholar 

  • Gust J, Wright JJ, Pratt EB, Bosma MM (2003) Development of synchronized activity of cranial motor neurons in the segmented embryonic mouse hindbrain. J Physiol 550:123–133

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hanani M, Francke M, Hartig W, Grosche J, Reichenbach A, Pannicke T (2000) Patch-clamp study of neurons and glial cells in isolated myenteric ganglia. Am J Physiol Gastrointest Liver Physiol 278:G644–G651

    CAS  PubMed  Google Scholar 

  • Hao MM, Anderson RB, Kobayashi K, Whitington PM, Young HM (2009) The migratory behavior of immature enteric neurons. Dev Neurobiol 69:22–35

    Article  CAS  PubMed  Google Scholar 

  • Hao MM, Boesmans W, Van den Abbeel V, Jennings EA, Bornstein JC, Young HM, Van den Berghe P (2011) Early emergence of neural activity in the developing mouse enteric nervous system. J Neurosci 31:15352–15361

    Article  CAS  PubMed  Google Scholar 

  • Hao MM, Lomax AE, McKeown SJ, Reid CA, Young HM, Bornstein JC (2012) Early development of electrical excitability in the mouse enteric nervous system. J Neurosci 32:10949–10960

    Article  CAS  PubMed  Google Scholar 

  • Hirst GDS, Holman ME, Spence I (1974) Two types of neurones in the myenteric plexus of duodenum in the guinea-pig. J Physiol 236:303–326

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hoff S, Zeller F, von Weyhern CWH, Wegner M, Schemann M, Michel K, Ruhl A (2008) Quantitative assessment of glial cells in the human and guinea rig enteric nervous system with an anti-sox8/9/10 antibody. J Comp Neurol 509:356–371

    Article  PubMed  Google Scholar 

  • Howard MJ, Gershon MD, Margiotta JF (1995) Expression of nicotinic acetylcholine receptors and subunit mRNA transcripts in cultures of neural crest cells. Dev Biol 170:479–495

    Article  CAS  PubMed  Google Scholar 

  • Jessen KR, Mirsky R (1980) Glial-cells in the enteric nervous system contain glial fibrillary acidic protein. Nature 286:736–737

    Article  CAS  PubMed  Google Scholar 

  • Kapur R, Yost C, Palmiter R (1992) A transgenic model for studying development of the enteric nervous system in normal and aganglionic mice. Development 116:167–175

    CAS  PubMed  Google Scholar 

  • Karadottir R, Hamilton NB, Bakiri Y, Attwell D (2008) Spiking and nonspiking classes of oligodendrocyte precursor glia in CNS white matter. Nat Neurosci 11:450–456

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Krieger C, Sears TA (1988) The development of voltage-dependent conductances in murine spinal-cord neurons in culture. Can J Physiol Pharmacol 66:1328–1336

    Article  CAS  PubMed  Google Scholar 

  • Le Douarin NM, Teillet MA (1973) The migration of neural crest cells to the wall of the digestive tract in avian embryo. J Embryol Exp Morphol 30:31–48

    PubMed  Google Scholar 

  • Lechner SG, Frenzel H, Wang R, Lewin GR (2009) Developmental waves of mechanosensitivity acquisition in sensory neuron subtypes during embryonic development. EMBO J 28:1479–1491

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mao YK, Wang BX, Kunze W (2006) Characterization of myenteric sensory neurons in the mouse small intestine. J Neurophysiol 96:998–1010

    Article  PubMed  Google Scholar 

  • Maudlej N, Hanani M (1992) Modulation of dye coupling among glial-cells in the myenteric and submucosal plexuses of the guinea-pig. Brain Res 578:94–98

    Article  CAS  PubMed  Google Scholar 

  • McCobb D, Best P, Beam K (1990) The differentiation of excitability in embryonic chick limb motoneurons. J Neurosci 10:2974–2984

    CAS  PubMed  Google Scholar 

  • McKinney MC, Kulesa PM (2011) In vivo calcium dynamics during neural crest cell migration and patterning using GCaMP3. Dev Biol 358:309–317

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mienville JM, David Lange G, Barker JL (1994) Reciprocal expression of cell-cell coupling and voltage-dependent Na current during embryogenesis of rat telencephalon. Brain Res Dev Brain Res 77:89–95

    Article  CAS  PubMed  Google Scholar 

  • Moody WJ, Bosma MM (2005) Ion channel development, spontaneous activity, and activity-dependent development in nerve and muscle cells. Physiol Rev 85:883–941

    Article  CAS  PubMed  Google Scholar 

  • Moruzzi AM, Abedini NC, Hansen MA, Olson JE, Bosma MM (2009) Differential expression of membrane conductances underlies spontaneous event initiation by rostral midline neurons in the embryonic mouse hindbrain. J Physiol 587:5081–5093

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nishi S, North RA (1973) Intracellular recording from myenteric plexus of guinea-pig ileum. J Physiol 231:471–491

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nishiyama C, Uesaka T, Manabe T, Yonekura Y, Nagasawa T, Newgreen DF, Young HM, Enomoto H (2012) Trans-mesenteric neural crest cells are the principal source of the colonic enteric nervous system. Nat Neurosci 15:1211–U1264

    Article  CAS  PubMed  Google Scholar 

  • Owens DF, Kriegstein AR (1998) Patterns of intracellular calcium fluctuation in precursor cells of the neocortical ventricular zone. J Neurosci 18:5374–5388

    CAS  PubMed  Google Scholar 

  • Owens DF, Flint AC, Dammerman RS, Kriegstein AR (2000) Calcium dynamics of neocortical ventricular zone cells. Dev Neurosci 22:25–33

    Article  CAS  PubMed  Google Scholar 

  • Payette RF, Bennett GS, Gershon MD (1984) Neurofilament expression in vagal neural crest-derived precursors of enteric neurons. Dev Biol 105:273–287

    Article  CAS  PubMed  Google Scholar 

  • Picken Bahrey HL, Moody WJ (2003) Early development of voltage-gated ion currents and firing properties in neurons of the mouse cerebral cortex. J Neurophysiol 89:1761–1773

    Article  PubMed  Google Scholar 

  • Rosenberg SS, Spitzer NC (2011) Calcium signaling in neuronal development. Cold Spring Harb Perspect Biol 3, a004259

    Article  PubMed  PubMed Central  Google Scholar 

  • Rothe T, Juttner R, Bahring R, Grantyn R (1999) Ion conductances related to development of repetitive firing in mouse retinal ganglion neurons in situ. J Neurobiol 38:191–206

    Article  CAS  PubMed  Google Scholar 

  • Rothman TP, Tennyson VM, Gershon MD (1986) Colonization of the bowel by the precursors of enteric glia: studies of normal and congenitally aganglionic mutant mice. J Comp Neurol 252:493–506

    Article  CAS  PubMed  Google Scholar 

  • Rugiero F, Gola M, Kunze WAA, Reynaud JC, Furness JB, Clerc N (2002) Analysis of whole-cell currents by patch clamp of guinea-pig myenteric neurones in intact ganglia. J Physiol 538:447–463

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Serbedzija GN, Burgan S, Fraser SE, Bronner-Fraser M (1991) Vital dye labelling demonstrates a sacral neural crest contribution to the enteric nervous system of chick and mouse embryos. Development 111:857–866

    CAS  PubMed  Google Scholar 

  • Spitzer NC (2006) Electrical activity in early neuronal development. Nature 444:707–712

    Article  CAS  PubMed  Google Scholar 

  • Sundelacruz S, Levin M, Kaplan DL (2009) Role of membrane potential in the regulation of cell proliferation and differentiation. Stem Cell Rev 5:231–246

    Article  PubMed  Google Scholar 

  • Teitelman G, Gershon MD, Rothman TP, Joh TH, Reis DJ (1981) Proliferation and distribution of cells that transiently express a catecholaminergic phenotype during development of mice and rats. Dev Biol 86:348–355

    Article  CAS  PubMed  Google Scholar 

  • Wang X, Chan AKK, Sham MH, Burns AJ, Chan WY (2011) Analysis of the sacral neural crest cell contribution to the hindgut enteric nervous system in the mouse embryo. Gastroenterology 141:992–U712

    Article  PubMed  Google Scholar 

  • Yntema CL, Hammond WS (1954) The origin of intrinsic ganglia of trunk viscera from vagal neural crest in the chick embryo. J Comp Neurol 101:515–541

    Article  CAS  PubMed  Google Scholar 

  • Young HM, Ciampoli D, Hsuan J, Canty AJ (1999) Expression of ret-, p75NTR-, Phox2a-, Phox2b-, and tyrosine hydroxylase-immunoreactivity by undifferentiated neural crest-derived cells and different classes of enteric neurons in the embryonic mouse gut. Dev Dyn 216:137–152

    Article  CAS  PubMed  Google Scholar 

  • Young HM, Jones BR, McKeown SJ (2002) The projections of early enteric neurons are influenced by the direction of neural crest cell migration. J Neurosci 22:6005–6018

    CAS  PubMed  Google Scholar 

  • Young HM, Bergner AJ, Müller T (2003) Acquisition of neuronal and glial markers by neural crest-derived cells in the mouse intestine. J Comp Neurol 456:1–11

    Article  PubMed  Google Scholar 

  • Young HM, Turner KN, Bergner AJ (2005) The location and phenotype of proliferating neural-crest-derived cells in the developing mouse gut. Cell Tissue Res 320:1–9

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marlene M. Hao .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

M. Hao, M. (2016). Development of Neural Activity in the Enteric Nervous System: Similarities and Differences to Other Parts of the Nervous System. In: Brierley, S., Costa, M. (eds) The Enteric Nervous System. Advances in Experimental Medicine and Biology(), vol 891. Springer, Cham. https://doi.org/10.1007/978-3-319-27592-5_5

Download citation

Publish with us

Policies and ethics