Skip to main content

ENS Development Research Since 1983: Great Strides but Many Remaining Challenges

  • Chapter
  • First Online:
The Enteric Nervous System

Part of the book series: Advances in Experimental Medicine and Biology ((ANS,volume 891))

Abstract

The first enteric nervous system (ENS) conference, organized by Marcello Costa and John Furness, was held in Adelaide, Australia in 1983. In this article, we review what was known about the development of the ENS in 1983 and then summarize some of the major advances in the field since 1983.

The first enteric nervous system (ENS) conference, organized by Marcello Costa and John Furness, was held in Adelaide, Australia in 1983. In this article, we review what was known about the development of the ENS in 1983 and then summarize some of the major advances in the field since 1983.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Anderson RB, Enomoto H, Bornstein JC, Young HM (2004) The enteric nervous system is not essential for the propulsion of gut contents in fetal mice. Gut 53:1546–1547

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Anderson RB, Stewart AL, Young HM (2006) Phenotypes of neural-crest-derived cells in vagal and sacral pathways. Cell Tissue Res 323:11–25

    Article  CAS  PubMed  Google Scholar 

  • Ang SL (2006) Transcriptional control of midbrain dopaminergic neuron development. Development 133:3499–3506

    Article  CAS  PubMed  Google Scholar 

  • Baetge G, Gershon MD (1989) Transient catecholaminergic (TC) cells in the vagus nerves and bowel of fetal mice: relationship to the development of enteric neurons. Dev Biol 132:189–211

    Article  CAS  PubMed  Google Scholar 

  • Baetge G, Pintar JE, Gershon MD (1990) Transiently catecholaminergic (TC) cells in the bowel of the fetal rat: precursors of noncatecholaminergic enteric neurons. Dev Biol 141:353–380

    Article  CAS  PubMed  Google Scholar 

  • Barlow AJ, Wallace AS, Thapar N, Burns AJ (2008) Critical numbers of neural crest cells are required in the pathways from the neural tube to the foregut to ensure complete enteric nervous system formation. Development 135:1681–1691

    Article  CAS  PubMed  Google Scholar 

  • Bergner AJ et al (2014) Birthdating of myenteric neuron subtypes in the small intestine of the mouse. J Comp Neurol 522:514–527

    Article  CAS  PubMed  Google Scholar 

  • Blaugrund E et al (1996) Distinct subpopulations of enteric neuronal progenitors defined by time of development, sympathoadrenal lineage markers and Mash-1-dependence. Development 122:309–320

    CAS  PubMed  Google Scholar 

  • Burns AJ, Le Douarin NM (1998) The sacral neural crest contributes neurons and glia to the post-umbilical gut: spatiotemporal analysis of the development of the enteric nervous system. Development 125:4335–4347

    CAS  PubMed  Google Scholar 

  • Chalazonitis A (2004) Neurotrophin-3 in the development of the enteric nervous system. Prog Brain Res 146:243–263

    Article  CAS  PubMed  Google Scholar 

  • Chalazonitis A, Rothman TP, Chen J, Gershon MD (1998) Age-dependent differences in the effects of GDNF and NT-3 on the development of neurons and glia from neural crest-derived precursors immunoselected from the fetal rat gut: expression of GFRalpha-1 in vitro and in vivo. Dev Biol 204:385–406

    Article  CAS  PubMed  Google Scholar 

  • Chalazonitis A et al (2004) Bone morphogenetic protein-2 and -4 limit the number of enteric neurons but promote development of a TrkC-expressing neurotrophin-3-dependent subset. J Neurosci 24:4266–4282

    Article  CAS  PubMed  Google Scholar 

  • Chalazonitis A et al (2008) Bone morphogenetic protein regulation of enteric neuronal phenotypic diversity: relationship to timing of cell cycle exit. J Comp Neurol 509:474–492

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chalazonitis A, D’Autreaux F, Pham TD, Kessler JA, Gershon MD (2010) Bone morphogenetic proteins regulate enteric gliogenesis by modulating ErbB3 signaling. Dev Biol 350:64–79

    Article  PubMed  PubMed Central  Google Scholar 

  • Ciment G, Weston JA (1983) Enteric neurogenesis by neural crest-derived branchial arch mesenchymal cells. Nature 305:424–427

    Article  CAS  PubMed  Google Scholar 

  • Costa M et al (1996) Neurochemical classification of myenteric neurons in the guinea-pig ileum. Neuroscience 75:949–967

    Article  CAS  PubMed  Google Scholar 

  • Denaxa M et al (2012) Maturation-promoting activity of SATB1 in MGE-derived cortical interneurons. Cell Rep 2:1351–1362

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Druckenbrod NR, Epstein ML (2007) Behavior of enteric neural crest-derived cells varies with respect to the migratory wavefront. Dev Dyn 236:84–92

    Article  PubMed  Google Scholar 

  • Druckenbrod NR, Epstein ML (2009) Age-dependent changes in the gut environment restrict the invasion of the hindgut by enteric neural progenitors. Development 136:3195–3203

    Article  CAS  PubMed  Google Scholar 

  • Durbec P et al (1996) GDNF signalling through the Ret receptor tyrosine kinase. Nature 381:789–793

    Article  CAS  PubMed  Google Scholar 

  • Edery P et al (1994) Mutations of the RET proto-oncogene in Hirschsprung’s disease. Nature 367:378–380

    Article  CAS  PubMed  Google Scholar 

  • Epstein ML, Sherman D, Gershon MD (1980) Development of serotonergic neurons in the chick duodenum. Dev Biol 77:22–40

    Article  CAS  PubMed  Google Scholar 

  • Epstein ML, Hudis J, Dahl JL (1983) The development of peptidergic neurons in the foregut of the chick. J Neurosci 3:2431–2447

    CAS  PubMed  Google Scholar 

  • Fu M, Lui VC, Sham MH, Pachnis V, Tam PK (2004) Sonic hedgehog regulates the proliferation, differentiation, and migration of enteric neural crest cells in gut. J Cell Biol 166:673–684

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fu M, Vohra BP, Wind D, Heuckeroth RO (2006) BMP signaling regulates murine enteric nervous system precursor migration, neurite fasciculation, and patterning via altered Ncam1 polysialic acid addition. Dev Biol 299:137–150

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fu M et al (2010) Vitamin A facilitates enteric nervous system precursor migration by reducing Pten accumulation. Development 137:631–640

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gershon MD (2010) Developmental determinants of the independence and complexity of the enteric nervous system. Trends Neurosci 33:446–456

    Article  CAS  PubMed  Google Scholar 

  • Gershon MD, Thompson EB (1973) The maturation of neuromuscular function in a multiply innervated structure: development of the longitudinal smooth muscle of the foetal mammalian gut and its cholinergic excitatory, adrenergic inhibitory, and non-adrenergic inhibitory innervation. J Physiol 234:257–277

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gershon MD, Epstein ML, Hegstrand L (1980) Colonization of the chick gut by progenitors of enteric serotonergic neurons: distribution, differentiation, and maturation within the gut. Dev Biol 77:41–51

    Article  CAS  PubMed  Google Scholar 

  • Gershon TR et al (2009) Enteric neural crest differentiation in ganglioneuromas implicates Hedgehog signaling in peripheral neuroblastic tumor pathogenesis. PLoS One 4, e7491

    Article  PubMed  PubMed Central  Google Scholar 

  • Gianino S, Grider JR, Cresswell J, Enomoto H, Heuckeroth RO (2003) GDNF availability determines enteric neuron number by controlling precursor proliferation. Development 130:2187–2198

    Article  CAS  PubMed  Google Scholar 

  • Goldstein AM, Hofstra RM, Burns AJ (2013) Building a brain in the gut: development of the enteric nervous system. Clin Genet 83:307–316

    Article  CAS  PubMed  Google Scholar 

  • Goridis C, Brunet JF (1999) Transcriptional control of neurotransmitter phenotype. Curr Opin Neurobiol 9:47–53

    Article  CAS  PubMed  Google Scholar 

  • Hao MM et al (2011) Early emergence of neural activity in the developing mouse enteric nervous system. J Neurosci 31:15352–15361

    Article  CAS  PubMed  Google Scholar 

  • Hao MM et al (2012) Early development of electrical excitability in the mouse enteric nervous system. J Neurosci 32:10949–10960

    Article  CAS  PubMed  Google Scholar 

  • Heanue TA, Pachnis V (2007) Enteric nervous system development and Hirschsprung’s disease: advances in genetic and stem cell studies. Nat Rev Neurosci 8:466–479

    Article  CAS  PubMed  Google Scholar 

  • Hearn CJ, Murphy M, Newgreen D (1998) GDNF and ET-3 differentially modulate the numbers of avian enteric neural crest cells and enteric neurons in vitro. Dev Biol 197:93–105

    Article  CAS  PubMed  Google Scholar 

  • Heuckeroth RO, Lampe PA, Johnson EM, Milbrandt J (1998) Neurturin and GDNF promote proliferation and survival of enteric neuron and glial progenitors in vitro. Dev Biol 200:116–129

    Article  CAS  PubMed  Google Scholar 

  • Howard MJ (2005) Mechanisms and perspectives on differentiation of autonomic neurons. Dev Biol 277:271–286

    Article  CAS  PubMed  Google Scholar 

  • Jiang Y, Liu MT, Gershon MD (2003) Netrins and DCC in the guidance of migrating neural crest-derived cells in the developing bowel and pancreas. Dev Biol 258:364–384

    Article  CAS  PubMed  Google Scholar 

  • Kapur RP, Sweetser DA, Doggett B, Siebert JR, Palmiter RD (1995) Intercellular signals downstream of endothelin receptor-B mediate colonization of the large intestine by enteric neuroblasts. Development 121:3787–3795

    CAS  PubMed  Google Scholar 

  • Kulesa PM, Bailey CM, Kasemeier-Kulesa JC, McLennan R (2010) Cranial neural crest migration: new rules for an old road. Dev Biol 344:543–554

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lake JI, Heuckeroth RO (2013) Enteric nervous system development: migration, differentiation, and disease. Am J Physiol Gastrointest Liver Physiol 305:G1–G24

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lake JI, Tusheva OA, Graham BL, Heuckeroth RO (2013) Hirschsprung-like disease is exacerbated by reduced de novo GMP synthesis. J Clin Invest 123:4875–4887

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lang D et al (2000) Pax3 is required for enteric ganglia formation and functions with Sox10 to modulate expression of c-ret. J Clin Invest 106:963–971

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Laranjeira C, Pachnis V (2009) Enteric nervous system development: recent progress and future challenges. Auton Neurosci 151:61–69

    Article  CAS  PubMed  Google Scholar 

  • Le Douarin NM, Teillet MA (1973) The migration of neural crest cells to the wall of the digestive tract in avian embryo. J Embryol Exp Morphol 30:31–48

    PubMed  Google Scholar 

  • Lei J, Howard MJ (2011) Targeted deletion of Hand2 in enteric neural precursor cells affects its functions in neurogenesis, neurotransmitter specification and gangliogenesis, causing functional aganglionosis. Development 138:4789–4800

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li Z et al (2011) Essential roles of enteric neuronal serotonin in gastrointestinal motility and the development/survival of enteric dopaminergic neurons. J Neurosci 31:8998–9009

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • McConnell SK (1989) The determination of neuronal fate in the cerebral cortex. Trends Neurosci 12:342–349

    Article  CAS  PubMed  Google Scholar 

  • McKeown SJ, Chow CW, Young HM (2001) Development of the submucous plexus in the large intestine of the mouse. Cell Tissue Res 303:301–305

    Article  CAS  PubMed  Google Scholar 

  • McLain CR Jr (1963) Amniography studies of the gastrointestinal motility of the human fetus. Am J Obstet Gynecol 86:1079–1087

    PubMed  Google Scholar 

  • Moore MW et al (1996) Renal and neuronal abnormalities in mice lacking GDNF. Nature 382:76–79

    Article  CAS  PubMed  Google Scholar 

  • Mundell NA et al (2012) Enteric nervous system specific deletion of Foxd3 disrupts glial cell differentiation and activates compensatory enteric progenitors. Dev Biol 363:373–387

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nagy N, Goldstein AM (2006) Endothelin-3 regulates neural crest cell proliferation and differentiation in the hindgut enteric nervous system. Dev Biol 293:203–217

    Article  CAS  PubMed  Google Scholar 

  • Nishiyama C et al (2012) Trans-mesenteric neural crest cells are the principal source of the colonic enteric nervous system. Nat Neurosci 15:1211–1218

    Article  CAS  PubMed  Google Scholar 

  • Obermayr F, Hotta R, Enomoto H, Young HM (2013) Development and developmental disorders of the enteric nervous system. Nat Rev Gastroenterol Hepatol 10:43–57

    Article  CAS  PubMed  Google Scholar 

  • Pattyn A, Morin X, Cremer H, Goridis C, Brunet JF (1999) The homeobox gene Phox2b is essential for the development of autonomic neural crest derivatives. Nature 399:366–370

    Article  CAS  PubMed  Google Scholar 

  • Payette RF, Bennett GS, Gershon MD (1984) Neurofilament expression in vagal neural crest-derived precursors of enteric neurons. Dev Biol 105:273–287

    Article  CAS  PubMed  Google Scholar 

  • Peters-van der Sanden MJ et al (1993) Ablation of various regions within the avian vagal neural crest has differential effects on ganglion formation in the fore-, mid- and hindgut. Dev Dyn 196:183–194

    Article  CAS  PubMed  Google Scholar 

  • Pham TD, Gershon MD, Rothman TP (1991) Time of origin of neurons in the murine enteric nervous system: sequence in relation to phenotype. J Comp Neurol 314:789–798

    Article  CAS  PubMed  Google Scholar 

  • Pichel JG et al (1996) Defects in enteric innervation and kidney development in mice lacking GDNF. Nature 382:73–76

    Article  CAS  PubMed  Google Scholar 

  • Roberts RR et al (2010) The first intestinal motility patterns in fetal mice are not mediated by neurons or interstitial cells of Cajal. J Physiol 588:1153–1169

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rohrer H (2011) Transcriptional control of differentiation and neurogenesis in autonomic ganglia. Eur J Neurosci 34:1563–1573

    Article  PubMed  Google Scholar 

  • Romeo G et al (1994) Point mutations affecting the tyrosine kinase domain of the RET proto-oncogene in Hirschsprung’s disease. Nature 367:377–378

    Article  CAS  PubMed  Google Scholar 

  • Rothman TP, Gershon MD (1982) Phenotypic expression in the developing murine enteric nervous system. J Neurosci 2:381–393

    CAS  PubMed  Google Scholar 

  • Sanchez MP et al (1996) Renal agenesis and the absence of enteric neurons in mice lacking GDNF. Nature 382:70–73

    Article  CAS  PubMed  Google Scholar 

  • Sasselli V, Pachnis V, Burns AJ (2012) The enteric nervous system. Dev Biol 366:64–73

    Article  CAS  PubMed  Google Scholar 

  • Sasselli V et al (2013) Planar cell polarity genes control the connectivity of enteric neurons. J Clin Invest 123:1763–1772

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schuchardt A, D’Agati V, Larsson-Blomberg L, Costantini F, Pachnis V (1994) Defects in the kidney and enteric nervous system of mice lacking the tyrosine kinase receptor Ret. Nature 367:380–383

    Article  CAS  PubMed  Google Scholar 

  • Sidebotham EL et al (2002) Localization and endothelin-3 dependence of stem cells of the enteric nervous system in the embryonic colon. J Pediatr Surg 37:145–150

    Article  PubMed  Google Scholar 

  • Southard-Smith EM, Kos L, Pavan WJ (1998) Sox10 mutation disrupts neural crest development in Dom Hirschsprung mouse model. Nat Genet 18:60–64

    Article  CAS  PubMed  Google Scholar 

  • Srinivasan K et al (2012) A network of genetic repression and derepression specifies projection fates in the developing neocortex. Proc Natl Acad Sci U S A 109:19071–19078

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sukegawa A et al (2000) The concentric structure of the developing gut is regulated by Sonic hedgehog derived from endodermal epithelium. Development 127:1971–1980

    CAS  PubMed  Google Scholar 

  • Taraviras S et al (1999) Signalling by the RET receptor tyrosine kinase and its role in the development of the mammalian enteric nervous system. Development 126:2785–2797

    CAS  PubMed  Google Scholar 

  • Teitelman G, Gershon MD, Rothman TP, Joh TH, Reis DJ (1981) Proliferation and distribution of cells that transiently express a catecholaminergic phenotype during development of mice and rats. Dev Biol 86:348–355

    Article  CAS  PubMed  Google Scholar 

  • Teng L, Mundell NA, Frist AY, Wang Q, Labosky PA (2008) Requirement for Foxd3 in the maintenance of neural crest progenitors. Development 135:1615–1624

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Theveneau E, Mayor R (2012) Neural crest delamination and migration: from epithelium-to-mesenchyme transition to collective cell migration. Dev Biol 366:34–54

    Article  CAS  PubMed  Google Scholar 

  • Uesaka T et al (2007) Conditional ablation of GFRalpha1 in postmigratory enteric neurons triggers unconventional neuronal death in the colon and causes a Hirschsprung’s disease phenotype. Development 134:2171–2181

    Article  CAS  PubMed  Google Scholar 

  • Uesaka T, Nagashimada M, Yonemura S, Enomoto H (2008) Diminished Ret expression compromises neuronal survival in the colon and causes intestinal aganglionosis in mice. J Clin Invest 118:1890–1898

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wallace AS, Burns AJ (2005) Development of the enteric nervous system, smooth muscle and interstitial cells of Cajal in the human gastrointestinal tract. Cell Tissue Res 319:367–382

    Article  PubMed  Google Scholar 

  • Wang H et al (2010) The timing and location of glial cell line-derived neurotrophic factor expression determine enteric nervous system structure and function. J Neurosci 30:1523–1538

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang X, Chan AK, Sham MH, Burns AJ, Chan WY (2011) Analysis of the sacral neural crest cell contribution to the hindgut enteric nervous system in the mouse embryo. Gastroenterology 141:992–1002, e1001–1006

    Article  PubMed  Google Scholar 

  • Wu JJ, Chen JX, Rothman TP, Gershon MD (1999) Inhibition of in vitro enteric neuronal development by endothelin-3: mediation by endothelin B receptors. Development 126:1161–1173

    CAS  PubMed  Google Scholar 

  • Yntema CL, Hammond WS (1954) The origin of intrinsic ganglia of trunk viscera from vagal neural crest in the chick embryo. J Comp Neurol 101:515–541

    Article  CAS  PubMed  Google Scholar 

  • Young HM et al (2001) GDNF is a chemoattractant for enteric neural cells. Dev Biol 229:503–516

    Article  CAS  PubMed  Google Scholar 

  • Young HM et al (2004) Dynamics of neural crest-derived cell migration in the embryonic mouse gut. Dev Biol 270:455–473

    Article  CAS  PubMed  Google Scholar 

  • Young HM et al (2014) Colonizing while migrating: how do individual enteric neural crest cells behave? BMC Biol 12:23

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Heather M. Young .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Young, H.M., Stamp, L.A., McKeown, S.J. (2016). ENS Development Research Since 1983: Great Strides but Many Remaining Challenges. In: Brierley, S., Costa, M. (eds) The Enteric Nervous System. Advances in Experimental Medicine and Biology(), vol 891. Springer, Cham. https://doi.org/10.1007/978-3-319-27592-5_6

Download citation

Publish with us

Policies and ethics