Skip to main content

Part of the book series: Interdisciplinary Applied Mathematics ((IAM,volume 30 ))

  • 2797 Accesses

Abstract

Compartmental modeling is a broad modeling strategy that has been used in many different fields, though under varying denominations. Virtually all current applications and theoretical research in compartmental analysis are based on deterministic theory

This is Polyfemos the copper Cyclops whose body is full of water and someone has given him one eye, one mouth and one hand to each of which a tube is attached. Water appears to drip from his body and to gush from his mouth, all the tubes have regular flow. When the tube connected to his hand is opened his body will empty within 3 days, while the one from his eye will empty in one day and the one from his mouth in 2/5 of a day. Who can tell me how much time is needed to empty him when all three are opened together?

Metrodorus (331-278 BC)

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 59.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 79.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 79.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Bibliography

  1. Bassingthwaighte, J., Liebovitch, L., West, B.: Fractal Physiology. Methods in Physiology Series. Oxford University Press, New York (1994)

    Book  Google Scholar 

  2. Wise, M.: Negative power functions of time in pharmacokinetics and their implications. J. Pharmacokinet. Biopharm. 13(3), 309–346 (1985)

    Article  Google Scholar 

  3. Weiss, M.: A note on the role of generalized inverse Gaussian distributions of circulatory transit times in pharmacokinetics. J. Math. Biol. 20, 95–102 (1984)

    Article  MathSciNet  MATH  Google Scholar 

  4. Norwich, K.: Noncompartment models of whole-body clearance of tracers: a review. Ann. Biomed. Eng. 25, 421–439 (1997)

    Article  Google Scholar 

  5. Gerlowski, L., Jain, R.: Physiologically based pharmacokinetic modeling: principles and applications. J. Pharm. Sci. 72(10), 1103–1127 (1983)

    Article  Google Scholar 

  6. Roberts, M., Rowland, M.: A dispersion model of hepatic elimination: 1. Formulation of the model and bolus concentrations. J. Pharmacokinet. Biopharm. 14(3), 227–260 (1986)

    Article  Google Scholar 

  7. Wise, M.: Interpreting both short- and long-term power laws in physiological clearance curves. Math. Biosci. 20, 327–337 (1974)

    Article  MATH  Google Scholar 

  8. Wagner, J.: Fundamentals of Clinical Pharmacokinetics, 2nd edn. Drug Intelligence, Hamilton (1979)

    Google Scholar 

  9. Riggs, D.: The Mathematical Approach to Physiological Problems. MIT, Cambridge (1963)

    Google Scholar 

  10. Press, W., Teukolsky, S., Vetterling, W., Flannery, B.: Numerical Recipies in C. The Art of Scientific Computing, 2nd edn. Cambridge University Press, Victoria (1992)

    Google Scholar 

  11. Gibaldi, M., Perrier, D.: Pharmacokinetics. Drugs and the Pharmaceutical Science, vol. 15, 2nd edn. Marcel Dekker, New York (1982)

    Google Scholar 

  12. Matis, J., Wehrly, T., Metzler, C.: On some stochastic formulations and related statistical moments of pharmacokinetic models. J. Pharmacokinet. Biopharm. 11(1), 77–92 (1983)

    Article  Google Scholar 

  13. Soong, T.: Pharmacokinetics with uncertainties in rate constants. Math. Biosci. 12, 235–243 (1971)

    Article  Google Scholar 

  14. Tsokos, J., Tsokos, C.: Statistical modeling of pharmacokinetic systems. J. Dyn. Syst. Meas. Control. 98, 37–43 (1976)

    Article  MATH  Google Scholar 

  15. Michaelis, L., Menten, M.: Die Kinetik der Invertinwirkung. Biochem. Z. 49, 333–369 (1913)

    Google Scholar 

  16. Segel, L.: Simplification and scaling. SIAM Rev. 14(4), 547–571 (1972)

    Article  MathSciNet  MATH  Google Scholar 

  17. Fung, Y.: Biomechanics: Circulation. Springer, New York (1997)

    Book  Google Scholar 

  18. Brown, J., West, G.: Scaling in Biology. Oxford University Press, New York (2000)

    MATH  Google Scholar 

  19. Lefevre, J.: Teleonomical optimization of a fractal model of the pulmonary arterial bed. J. Theor. Biol. 102(2), 225–248 (1983)

    Article  Google Scholar 

  20. Zamir, M.: On fractal properties of arterial trees. J. Theor. Biol. 197(4), 517–526 (1999)

    Article  Google Scholar 

  21. West, G., Brown, J., Enquist, B.: A general model for the origin of allometric scaling laws in biology. Science 276, 122–126 (1997)

    Article  Google Scholar 

  22. Wagner, J.: Pharmacokinetics for the Pharmaceutical Scientist. Technomic, Lancaster (1993)

    Google Scholar 

  23. Weiss, M., Foster, W.: Pharmacokinetic model based on circulatory transport. Eur. J. Clin. Pharmacol. 16, 287–293 (1979)

    Article  Google Scholar 

  24. Vicini, P., Bonadonna, R., Lehtovirta, M., Groop, L., Cobelli, C.: Estimation of blood flow heterogeneity in human skeletal muscle using intravascular tracer data: importance for modeling transcapillary exchange. Ann. Biomed. Eng. 26, 764–774 (1998)

    Article  Google Scholar 

  25. Beard, D., Bassingthwaighte, J.: Advection and diffusion of substances in biological tissues with complex vascular networks. Ann. Biomed. Eng. 28(3), 253–268 (2000)

    Article  Google Scholar 

  26. Oliver, R., Jones, A., Rowland, M.: A whole-body physiologically based pharmacokinetic model incorporating dispersion concepts: short and long time characteristics. J. Pharmacokinet. Biopharm. 28(1), 27–55 (2001)

    Article  Google Scholar 

  27. Dokoumetzidis, A., Macheras, P.: A model for transport and dispersion in the circulatory system based on the vascular fractal tree. Ann. Biomed. Eng. 31(3), 284–293 (2003)

    Article  Google Scholar 

  28. Edwards, D.: A general theory of the macrotransport of nondepositing particles in the lung by convective dispersion. J. Aerosol Sci. 25(3), 543–565 (1994)

    Article  Google Scholar 

  29. Huang, W., Yen, R., McLaurine, M., Bledsoe, G.: Morphometry of the human pulmonary vasculature. J. Appl. Physiol. 81(5), 2123–2133 (1996)

    Google Scholar 

  30. Niemann, C., Henthorn, T., Krejcie, T., Shanks, C., Enders-Klein, C., Avram, M.: Indocyanine green kinetics characterize blood volume and flow distribution and their alteration by propranolol. Clin. Pharmacol. Ther. 67(4), 342–350 (2000)

    Article  Google Scholar 

  31. Karalis, V., Dokoumetzidis, A., Macheras, P.: A physiologically based approach for the estimation of recirculatory parameters. J. Pharmacol. Exp. Ther. 308(1), 198–205 (2004)

    Article  Google Scholar 

  32. Hashimoto, M., Watanabe, G.: Simultaneous measurement of effective hepatic blood flow and systemic circulation. Hepatogastroenterology 47(36), 1669–1674 (2000)

    Google Scholar 

  33. Rescigno, A., Segre, G.: Drug and Tracer Kinetics. Blaisdell, Waltham (1966)

    Google Scholar 

  34. Jacquez, J.: Compartmental Analysis in Biology and Medicine, 3rd edn. BioMedware, Ann Arbor (1996)

    MATH  Google Scholar 

  35. Wise, M., Borsboom, G.: Two exceptional sets of physiological clearance curves and their mathematical form: test cases? Bull. Math. Biol. 51, 579–596 (1989)

    Article  Google Scholar 

  36. Rescigno, A.: The rise and fall of compartmental analysis. Pharm. Res. 44(4), 335–340 (2001)

    Article  MathSciNet  Google Scholar 

  37. Weiss, M.: The anomalous pharmacokinetics of amiodarone explained by nonexponential tissue trapping. J. Pharmacokinet. Biopharm. 27(4), 383–396 (1999)

    Article  Google Scholar 

  38. Dokoumetzidis, A.: Contribution on the study of heterogeneity of biopharmaceutical, pharmacokinetic and pharmacodynamic processes. Ph.D. Thesis, National University of Athens (2002)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Macheras, P., Iliadis, A. (2016). Deterministic Compartmental Models. In: Modeling in Biopharmaceutics, Pharmacokinetics and Pharmacodynamics. Interdisciplinary Applied Mathematics, vol 30 . Springer, Cham. https://doi.org/10.1007/978-3-319-27598-7_8

Download citation

Publish with us

Policies and ethics