Skip to main content

Neutrophils, Inflammation, and Innate Immunity in Trauma-Induced Coagulopathy

  • Chapter
  • First Online:
Trauma Induced Coagulopathy

Abstract

Neutrophils are the primary innate immune cell involved in acute inflammatory responses to trauma and injury. While the mechanisms used by neutrophils to cause inflammation are designed to protect the host and allow for recovery, many of these same processes can have pathologic outcomes, including the development of trauma-induced coagulopathy. Neutrophil priming, ROS production, degranulation, NETosis, and responses to damage-associated molecular patterns and how these phenomena drive interactions of the neutrophil with other host tissues and cells such as the endothelium will be reviewed here in the context of major trauma and the resulting development of coagulopathy and end-organ damage. Although neutrophil biology and innate immunity is an expansive topic, the goal of this chapter is to provide the reader with a broad understanding of neutrophil function focused within the context of trauma and trauma-induced coagulopathy.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Delvaeye M, Conway EM. Coagulation and innate immune responses: can we view them separately? Blood. 2009;114(12):2367–74.

    Article  CAS  PubMed  Google Scholar 

  2. Greer JP. Wintrobe’s clinical hematology. 13th ed. Philadelphia, PA: Wolters Kluwer, Lippincott Williams & Wilkins Health; 2014. xxvii, 2,278 pp.

    Google Scholar 

  3. Hunter J, Home E. A treatise on the blood, inflammation, and gun-shot wounds. Philadelphia, PA: Thomas Bradford; 1796.

    Google Scholar 

  4. Hubner G, Brauchle M, Smola H, Madlener M, Fassler R, Werner S. Differential regulation of pro-inflammatory cytokines during wound healing in normal and glucocorticoid-treated mice. Cytokine. 1996;8(7):548–56.

    Article  CAS  PubMed  Google Scholar 

  5. Nwomeh BC, Liang HX, Cohen IK, Yager DR. MMP-8 is the predominant collagenase in healing wounds and nonhealing ulcers. J Surg Res. 1999;81(2):189–95.

    Article  CAS  PubMed  Google Scholar 

  6. Massberg S, Grahl L, von Bruehl ML, Manukyan D, Pfeiler S, Goosmann C, et al. Reciprocal coupling of coagulation and innate immunity via neutrophil serine proteases. Nat Med. 2010;16(8):887–96.

    Article  CAS  PubMed  Google Scholar 

  7. Gould TJ, Vu TT, Swystun LL, Dwivedi DJ, Mai SH, Weitz JI, et al. Neutrophil extracellular traps promote thrombin generation through platelet-dependent and platelet-independent mechanisms. Arterioscler Thromb Vasc Biol. 2014;34(9):1977–84.

    Article  CAS  PubMed  Google Scholar 

  8. Martinod K, Wagner DD. Thrombosis: tangled up in NETs. Blood. 2014;123(18):2768–76.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Saffarzadeh M, Juenemann C, Queisser MA, Lochnit G, Barreto G, Galuska SP, et al. Neutrophil extracellular traps directly induce epithelial and endothelial cell death: a predominant role of histones. PLoS One. 2012;7(2):e32366.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Westlin WF, Gimbrone Jr MA. Neutrophil-mediated damage to human vascular endothelium. Role of cytokine activation. Am J Pathol. 1993;142(1):117–28.

    CAS  PubMed  PubMed Central  Google Scholar 

  11. Hermant B, Bibert S, Concord E, Dublet B, Weidenhaupt M, Vernet T, et al. Identification of proteases involved in the proteolysis of vascular endothelium cadherin during neutrophil transmigration. J Biol Chem. 2003;278(16):14002–12.

    Article  CAS  PubMed  Google Scholar 

  12. Schofield ZV, Woodruff TM, Halai R, Wu MC, Cooper MA. Neutrophils--a key component of ischemia-reperfusion injury. Shock. 2013;40(6):463–70.

    Article  CAS  PubMed  Google Scholar 

  13. Grommes J, Soehnlein O. Contribution of neutrophils to acute lung injury. Mol Med. 2011;17(3–4):293–307.

    CAS  PubMed  PubMed Central  Google Scholar 

  14. Storch EK, Hillyer CD, Shaz BH. Spotlight on pathogenesis of TRALI: HNA-3a (CTL2) antibodies. Blood. 2014;124:1868.

    Article  CAS  PubMed  Google Scholar 

  15. Carden DL, Granger DN. Pathophysiology of ischaemia-reperfusion injury. J Pathol. 2000;190(3):255–66.

    Article  CAS  PubMed  Google Scholar 

  16. Camicia G, Pozner R, de Larranaga G. Neutrophil extracellular traps in sepsis. Shock. 2014;42(4):286–94.

    Article  CAS  PubMed  Google Scholar 

  17. Hayakawa M, Sawamura A, Gando S, Kubota N, Uegaki S, Shimojima H, et al. Disseminated intravascular coagulation at an early phase of trauma is associated with consumption coagulopathy and excessive fibrinolysis both by plasmin and neutrophil elastase. Surgery. 2011;149(2):221–30.

    Article  PubMed  Google Scholar 

  18. Pober JS, Sessa WC. Evolving functions of endothelial cells in inflammation. Nat Rev Immunol. 2007;7(10):803–15.

    Article  CAS  PubMed  Google Scholar 

  19. Pober JS. Activation and injury of endothelial cells by cytokines. Pathol Biol. 1998;46(3):159–63.

    CAS  PubMed  Google Scholar 

  20. Blann AD. Endothelial cell activation, injury, damage and dysfunction: separate entities or mutual terms? Blood Coagul Fibrinolysis. 2000;11(7):623–30.

    Article  CAS  PubMed  Google Scholar 

  21. Zarbock A, Ley K, McEver RP, Hidalgo A. Leukocyte ligands for endothelial selectins: specialized glycoconjugates that mediate rolling and signaling under flow. Blood. 2011;118(26):6743–51.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Nieswandt B, Pleines I, Bender M. Platelet adhesion and activation mechanisms in arterial thrombosis and ischaemic stroke. J Thromb Haemost. 2011;9 Suppl 1:92–104.

    Article  CAS  PubMed  Google Scholar 

  23. Blair P, Flaumenhaft R. Platelet alpha-granules: basic biology and clinical correlates. Blood Rev. 2009;23(4):177–89.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Cloutier A, Ear T, Blais-Charron E, Dubois CM, McDonald PP. Differential involvement of NF-kappaB and MAP kinase pathways in the generation of inflammatory cytokines by human neutrophils. J Leukoc Biol. 2007;81(2):567–77.

    Article  CAS  PubMed  Google Scholar 

  25. Cassatella MA. Neutrophil-derived proteins: selling cytokines by the pound. Adv Immunol. 1999;73:369–509.

    Article  CAS  PubMed  Google Scholar 

  26. Cloutier A, Guindi C, Larivee P, Dubois CM, Amrani A, McDonald PP. Inflammatory cytokine production by human neutrophils involves C/EBP transcription factors. J Immunol. 2009;182(1):563–71.

    Article  CAS  PubMed  Google Scholar 

  27. Athens JW, Raab SO, Haab OP, Mauer AM, Ashenbrucker H, Cartwright GE, et al. Leukokinetic studies. III. The distribution of granulocytes in the blood of normal subjects. J Clin Invest. 1961;40:159–64.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Ley K, Laudanna C, Cybulsky MI, Nourshargh S. Getting to the site of inflammation: the leukocyte adhesion cascade updated. Nat Rev Immunol. 2007;7(9):678–89.

    Article  CAS  PubMed  Google Scholar 

  29. Kuwano Y, Spelten O, Zhang H, Ley K, Zarbock A. Rolling on E- or P-selectin induces the extended but not high-affinity conformation of LFA-1 in neutrophils. Blood. 2010;116(4):617–24.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Zarbock A, Deem TL, Burcin TL, Ley K. Galphai2 is required for chemokine-induced neutrophil arrest. Blood. 2007;110(10):3773–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Constantin G, Majeed M, Giagulli C, Piccio L, Kim JY, Butcher EC, et al. Chemokines trigger immediate beta2 integrin affinity and mobility changes: differential regulation and roles in lymphocyte arrest under flow. Immunity. 2000;13(6):759–69.

    Article  CAS  PubMed  Google Scholar 

  32. Smith ML, Olson TS, Ley K. CXCR2- and E-selectin-induced neutrophil arrest during inflammation in vivo. J Exp Med. 2004;200(7):935–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Astrof NS, Salas A, Shimaoka M, Chen J, Springer TA. Importance of force linkage in mechanochemistry of adhesion receptors. Biochemistry. 2006;45(50):15020–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Alves-Filho JC, Spiller F, Cunha FQ. Neutrophil paralysis in sepsis. Shock. 2010;34 Suppl 1:15–21.

    Article  PubMed  Google Scholar 

  35. Gambardella L, Vermeren S. Molecular players in neutrophil chemotaxis--focus on PI3K and small GTPases. J Leukoc Biol. 2013;94(4):603–12.

    Article  CAS  PubMed  Google Scholar 

  36. Feng D, Nagy JA, Pyne K, Dvorak HF, Dvorak AM. Neutrophils emigrate from venules by a transendothelial cell pathway in response to FMLP. J Exp Med. 1998;187(6):903–15.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Yuan SY, Shen Q, Rigor RR, Wu MH. Neutrophil transmigration, focal adhesion kinase and endothelial barrier function. Microvasc Res. 2012;83(1):82–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Woodfin A, Voisin MB, Beyrau M, Colom B, Caille D, Diapouli FM, et al. The junctional adhesion molecule JAM-C regulates polarized transendothelial migration of neutrophils in vivo. Nat Immunol. 2011;12(8):761–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Diacovo TG, Roth SJ, Buccola JM, Bainton DF, Springer TA. Neutrophil rolling, arrest, and transmigration across activated, surface-adherent platelets via sequential action of P-selectin and the beta 2-integrin CD11b/CD18. Blood. 1996;88(1):146–57.

    CAS  PubMed  Google Scholar 

  40. Wagner DD, Burger PC. Platelets in inflammation and thrombosis. Arterioscler Thromb Vasc Biol. 2003;23(12):2131–7.

    Article  CAS  PubMed  Google Scholar 

  41. Yeo EL, Sheppard JA, Feuerstein IA. Role of P-selectin and leukocyte activation in polymorphonuclear cell adhesion to surface adherent activated platelets under physiologic shear conditions (an injury vessel wall model). Blood. 1994;83(9):2498–507.

    CAS  PubMed  Google Scholar 

  42. Kuijper PH, Gallardo Torres HI, van der Linden JA, Lammers JW, Sixma JJ, Koenderman L, et al. Platelet-dependent primary hemostasis promotes selectin- and integrin-mediated neutrophil adhesion to damaged endothelium under flow conditions. Blood. 1996;87(8):3271–81.

    CAS  PubMed  Google Scholar 

  43. Weber C, Springer TA. Neutrophil accumulation on activated, surface-adherent platelets in flow is mediated by interaction of Mac-1 with fibrinogen bound to alphaIIbbeta3 and stimulated by platelet-activating factor. J Clin Invest. 1997;100(8):2085–93.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Kuijper PH, Gallardo Torres HI, Lammers JW, Sixma JJ, Koenderman L, Zwaginga JJ. Platelet and fibrin deposition at the damaged vessel wall: cooperative substrates for neutrophil adhesion under flow conditions. Blood. 1997;89(1):166–75.

    CAS  PubMed  Google Scholar 

  45. Zwaginga JJ, Torres HI, Lammers J, Sixma JJ, Koenderman L, Kuijper PH. Minimal platelet deposition and activation in models of injured vessel wall ensure optimal neutrophil adhesion under flow conditions. Arterioscler Thromb Vasc Biol. 1999;19(6):1549–54.

    Article  CAS  PubMed  Google Scholar 

  46. Kirchhofer D, Riederer MA, Baumgartner HR. Specific accumulation of circulating monocytes and polymorphonuclear leukocytes on platelet thrombi in a vascular injury model. Blood. 1997;89(4):1270–8.

    CAS  PubMed  Google Scholar 

  47. Simon DI, Chen Z, Xu H, Li CQ, Dong J, McIntire LV, et al. Platelet glycoprotein ibalpha is a counterreceptor for the leukocyte integrin Mac-1 (CD11b/CD18). J Exp Med. 2000;192(2):193–204.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Ostrovsky L, King AJ, Bond S, Mitchell D, Lorant DE, Zimmerman GA, et al. A juxtacrine mechanism for neutrophil adhesion on platelets involves platelet-activating factor and a selectin-dependent activation process. Blood. 1998;91(8):3028–36.

    CAS  PubMed  Google Scholar 

  49. Reddy RC, Standiford TJ. Effects of sepsis on neutrophil chemotaxis. Curr Opin Hematol. 2010;17(1):18–24.

    Article  CAS  PubMed  Google Scholar 

  50. Zhang Q, Raoof M, Chen Y, Sumi Y, Sursal T, Junger W, et al. Circulating mitochondrial DAMPs cause inflammatory responses to injury. Nature. 2010;464(7285):104–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Le Y, Murphy PM, Wang JM. Formyl-peptide receptors revisited. Trends Immunol. 2002;23(11):541–8.

    Article  CAS  PubMed  Google Scholar 

  52. Martin-Armas M, Simon-Santamaria J, Pettersen I, Moens U, Smedsrod B, Sveinbjornsson B. Toll-like receptor 9 (TLR9) is present in murine liver sinusoidal endothelial cells (LSECs) and mediates the effect of CpG-oligonucleotides. J Hepatol. 2006;44(5):939–46.

    Article  CAS  PubMed  Google Scholar 

  53. Goulopoulou S, Matsumoto T, Bomfim GF, Webb RC. Toll-like receptor 9 activation: a novel mechanism linking placenta-derived mitochondrial DNA and vascular dysfunction in pre-eclampsia. Clin Sci. 2012;123(7):429–35.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Wenceslau CF, McCarthy CG, Goulopoulou S, Szasz T, NeSmith EG, Webb RC. Mitochondrial-derived N-formyl peptides: novel links between trauma, vascular collapse and sepsis. Med Hypotheses. 2013;81(4):532–5.

    Article  CAS  PubMed  Google Scholar 

  55. O’Flaherty JT, Kreutzer DL, Showell HJ, Vitkauskas G, Becker EL, Ward PA. Selective neutrophil desensitization to chemotactic factors. J Cell Biol. 1979;80(3):564–72.

    Article  PubMed  Google Scholar 

  56. Huang J, Hitt ND, Kleinberg ME. Stoichiometry of p22-phox and gp91-phox in phagocyte cytochrome b558. Biochemistry. 1995;34(51):16753–7.

    Article  CAS  PubMed  Google Scholar 

  57. Yu L, Quinn MT, Cross AR, Dinauer MC. Gp91(phox) is the heme binding subunit of the superoxide-generating NADPH oxidase. Proc Natl Acad Sci U S A. 1998;95(14):7993–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Sheppard FR, Kelher MR, Moore EE, McLaughlin NJ, Banerjee A, Silliman CC. Structural organization of the neutrophil NADPH oxidase: phosphorylation and translocation during priming and activation. J Leukoc Biol. 2005;78(5):1025–42.

    Article  CAS  PubMed  Google Scholar 

  59. Gay JC. Mechanism and regulation of neutrophil priming by platelet-activating factor. J Cell Physiol. 1993;156(1):189–97.

    Article  CAS  PubMed  Google Scholar 

  60. Karnad AB, Hartshorn KL, Wright J, Myers JB, Schwartz JH, Tauber AI. Priming of human neutrophils with N-formyl-methionyl-leucyl-phenylalanine by a calcium-independent, pertussis toxin-insensitive pathway. Blood. 1989;74(7):2519–26.

    CAS  PubMed  Google Scholar 

  61. Guthrie LA, McPhail LC, Henson PM, Johnston Jr RB. Priming of neutrophils for enhanced release of oxygen metabolites by bacterial lipopolysaccharide. Evidence for increased activity of the superoxide-producing enzyme. J Exp Med. 1984;160(6):1656–71.

    Article  CAS  PubMed  Google Scholar 

  62. Berkow RL, Wang D, Larrick JW, Dodson RW, Howard TH. Enhancement of neutrophil superoxide production by preincubation with recombinant human tumor necrosis factor. J Immunol. 1987;139(11):3783–91.

    CAS  PubMed  Google Scholar 

  63. El-Benna J, Dang PM, Gougerot-Pocidalo MA. Priming of the neutrophil NADPH oxidase activation: role of p47phox phosphorylation and NOX2 mobilization to the plasma membrane. Semin Immunopathol. 2008;30(3):279–89.

    Article  CAS  PubMed  Google Scholar 

  64. Jacobi J, Sela S, Cohen HI, Chezar J, Kristal B. Priming of polymorphonuclear leukocytes: a culprit in the initiation of endothelial cell injury. Am J Physiol Heart Circ Physiol. 2006;290(5):H2051–8.

    Article  CAS  PubMed  Google Scholar 

  65. Varani J, Ginsburg I, Schuger L, Gibbs DF, Bromberg J, Johnson KJ, et al. Endothelial cell killing by neutrophils. Synergistic interaction of oxygen products and proteases. Am J Pathol. 1989;135(3):435–8.

    CAS  PubMed  PubMed Central  Google Scholar 

  66. Ginsburg I, Gibbs DF, Schuger L, Johnson KJ, Ryan US, Ward PA, et al. Vascular endothelial cell killing by combinations of membrane-active agents and hydrogen peroxide. Free Radic Biol Med. 1989;7(4):369–76.

    Article  CAS  PubMed  Google Scholar 

  67. Brown GE, Stewart MQ, Bissonnette SA, Elia AE, Wilker E, Yaffe MB. Distinct ligand-dependent roles for p38 MAPK in priming and activation of the neutrophil NADPH oxidase. J Biol Chem. 2004;279(26):27059–68.

    Article  CAS  PubMed  Google Scholar 

  68. Sheppard FR, Moore EE, McLaughlin N, Kelher M, Johnson JL, Silliman CC. Clinically relevant osmolar stress inhibits priming-induced PMN NADPH oxidase subunit translocation. J Trauma. 2005;58(4):752–7. discussion 7.

    Article  CAS  PubMed  Google Scholar 

  69. Dang PM, Stensballe A, Boussetta T, Raad H, Dewas C, Kroviarski Y, et al. A specific p47phox -serine phosphorylated by convergent MAPKs mediates neutrophil NADPH oxidase priming at inflammatory sites. J Clin Invest. 2006;116(7):2033–43.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Boussetta T, Gougerot-Pocidalo MA, Hayem G, Ciappelloni S, Raad H, Arabi Derkawi R, et al. The prolyl isomerase Pin1 acts as a novel molecular switch for TNF-alpha-induced priming of the NADPH oxidase in human neutrophils. Blood. 2010;116(26):5795–802.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Tilton B, Andjelkovic M, Didichenko SA, Hemmings BA, Thelen M. G-Protein-coupled receptors and Fcgamma-receptors mediate activation of Akt/protein kinase B in human phagocytes. J Biol Chem. 1997;272(44):28096–101.

    Article  CAS  PubMed  Google Scholar 

  72. Hoyal CR, Gutierrez A, Young BM, Catz SD, Lin JH, Tsichlis PN, et al. Modulation of p47PHOX activity by site-specific phosphorylation: Akt-dependent activation of the NADPH oxidase. Proc Natl Acad Sci U S A. 2003;100(9):5130–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Chen Q, Powell DW, Rane MJ, Singh S, Butt W, Klein JB, et al. Akt phosphorylates p47phox and mediates respiratory burst activity in human neutrophils. J Immunol. 2003;170(10):5302–8.

    Article  CAS  PubMed  Google Scholar 

  74. DeLeo FR, Renee J, McCormick S, Nakamura M, Apicella M, Weiss JP, et al. Neutrophils exposed to bacterial lipopolysaccharide upregulate NADPH oxidase assembly. J Clin Invest. 1998;101(2):455–63.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Ward RA, Nakamura M, McLeish KR. Priming of the neutrophil respiratory burst involves p38 mitogen-activated protein kinase-dependent exocytosis of flavocytochrome b558-containing granules. J Biol Chem. 2000;275(47):36713–9.

    Article  CAS  PubMed  Google Scholar 

  76. Henrich D, Zimmer S, Seebach C, Frank J, Barker J, Marzi I. Trauma-activated polymorphonucleated leukocytes damage endothelial progenitor cells: probable role of CD11b/CD18-CD54 interaction and release of reactive oxygen species. Shock. 2011;36(3):216–22.

    Article  CAS  PubMed  Google Scholar 

  77. Fuchs TA, Abed U, Goosmann C, Hurwitz R, Schulze I, Wahn V, et al. Novel cell death program leads to neutrophil extracellular traps. J Cell Biol. 2007;176(2):231–41.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Sengelov H, Kjeldsen L, Borregaard N. Control of exocytosis in early neutrophil activation. J Immunol. 1993;150(4):1535–43.

    CAS  PubMed  Google Scholar 

  79. Wright HL, Moots RJ, Bucknall RC, Edwards SW. Neutrophil function in inflammation and inflammatory diseases. Rheumatology. 2010;49(9):1618–31.

    Article  CAS  PubMed  Google Scholar 

  80. Faurschou M, Borregaard N. Neutrophil granules and secretory vesicles in inflammation. Microbes Infect. 2003;5(14):1317–27.

    Article  CAS  PubMed  Google Scholar 

  81. Sorokin L. The impact of the extracellular matrix on inflammation. Nat Rev Immunol. 2010;10(10):712–23.

    Article  CAS  PubMed  Google Scholar 

  82. Wohner N, Keresztes Z, Sotonyi P, Szabo L, Komorowicz E, Machovich R, et al. Neutrophil granulocyte-dependent proteolysis enhances platelet adhesion to the arterial wall under high-shear flow. J Thromb Haemost. 2010;8(7):1624–31.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Furuno T, Mitsuyama T, Hidaka K, Tanaka T, Hara N. The role of neutrophil elastase in human pulmonary artery endothelial cell injury. Int Arch Allergy Immunol. 1997;112(3):262–9.

    Article  CAS  PubMed  Google Scholar 

  84. Nakatani K, Takeshita S, Tsujimoto H, Kawamura Y, Sekine I. Inhibitory effect of serine protease inhibitors on neutrophil-mediated endothelial cell injury. J Leukoc Biol. 2001;69(2):241–7.

    CAS  PubMed  Google Scholar 

  85. Imamura T, Tanase S, Hayashi I, Potempa J, Kozik A, Travis J. Release of a new vascular permeability enhancing peptide from kininogens by human neutrophil elastase. Biochem Biophys Res Commun. 2002;294(2):423–8.

    Article  CAS  PubMed  Google Scholar 

  86. Tagami T, Kushimoto S, Tosa R, Omura M, Yonezawa K, Akiyama G, et al. Plasma neutrophil elastase correlates with pulmonary vascular permeability: a prospective observational study in patients with pneumonia. Respirology. 2011;16(6):953–8.

    Article  PubMed  Google Scholar 

  87. Lau D, Baldus S. Myeloperoxidase and its contributory role in inflammatory vascular disease. Pharmacol Ther. 2006;111(1):16–26.

    Article  CAS  PubMed  Google Scholar 

  88. Vita JA, Brennan ML, Gokce N, Mann SA, Goormastic M, Shishehbor MH, et al. Serum myeloperoxidase levels independently predict endothelial dysfunction in humans. Circulation. 2004;110(9):1134–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Eiserich JP, Hristova M, Cross CE, Jones AD, Freeman BA, Halliwell B, et al. Formation of nitric oxide-derived inflammatory oxidants by myeloperoxidase in neutrophils. Nature. 1998;391(6665):393–7.

    Article  CAS  PubMed  Google Scholar 

  90. Eiserich JP, Baldus S, Brennan ML, Ma W, Zhang C, Tousson A, et al. Myeloperoxidase, a leukocyte-derived vascular NO oxidase. Science. 2002;296(5577):2391–4.

    Article  CAS  PubMed  Google Scholar 

  91. Pitanga TN, de Aragao Franca L, Rocha VC, Meirelles T, Borges VM, Goncalves MS, et al. Neutrophil-derived microparticles induce myeloperoxidase-mediated damage of vascular endothelial cells. BMC Cell Biol. 2014;15:21.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  92. Mathy-Hartert M, Deby-Dupont G, Deby C, Jadoul L, Vandenberghe A, Lamy M. Cytotoxicity towards human endothelial cells, induced by neutrophil myeloperoxidase: protection by ceftazidime. Mediators Inflamm. 1995;4(6):437–43.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Vadseth C, Souza JM, Thomson L, Seagraves A, Nagaswami C, Scheiner T, et al. Pro-thrombotic state induced by post-translational modification of fibrinogen by reactive nitrogen species. J Biol Chem. 2004;279(10):8820–6.

    Article  CAS  PubMed  Google Scholar 

  94. Baldus S, Eiserich JP, Mani A, Castro L, Figueroa M, Chumley P, et al. Endothelial transcytosis of myeloperoxidase confers specificity to vascular ECM proteins as targets of tyrosine nitration. J Clin Invest. 2001;108(12):1759–70.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Baldus S, Rudolph V, Roiss M, Ito WD, Rudolph TK, Eiserich JP, et al. Heparins increase endothelial nitric oxide bioavailability by liberating vessel-immobilized myeloperoxidase. Circulation. 2006;113(15):1871–8.

    Article  CAS  PubMed  Google Scholar 

  96. Brinkmann V, Zychlinsky A. Neutrophil extracellular traps: is immunity the second function of chromatin? J Cell Biol. 2012;198(5):773–83.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Clark SR, Ma AC, Tavener SA, McDonald B, Goodarzi Z, Kelly MM, et al. Platelet TLR4 activates neutrophil extracellular traps to ensnare bacteria in septic blood. Nat Med. 2007;13(4):463–9.

    Article  CAS  PubMed  Google Scholar 

  98. Rossaint J, Herter JM, Van Aken H, Napirei M, Doring Y, Weber C, et al. Synchronized integrin engagement and chemokine activation is crucial in neutrophil extracellular trap-mediated sterile inflammation. Blood. 2014;123(16):2573–84.

    Article  CAS  PubMed  Google Scholar 

  99. Tadie JM, Bae HB, Jiang S, Park DW, Bell CP, Yang H, et al. HMGB1 promotes neutrophil extracellular trap formation through interactions with Toll-like receptor 4. Am J Physiol Lung Cell Mol Physiol. 2013;304(5):L342–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Kessenbrock K, Krumbholz M, Schonermarck U, Back W, Gross WL, Werb Z, et al. Netting neutrophils in autoimmune small-vessel vasculitis. Nat Med. 2009;15(6):623–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Liu FC, Chuang YH, Tsai YF, Yu HP. Role of neutrophil extracellular traps following injury. Shock. 2014;41(6):491–8.

    Article  CAS  PubMed  Google Scholar 

  102. McIlroy DJ, Jarnicki AG, Au GG, Lott N, Smith DW, Hansbro PM, et al. Mitochondrial DNA neutrophil extracellular traps are formed after trauma and subsequent surgery. J Crit Care. 2014;29(6):1133.e1–5.

    Article  CAS  Google Scholar 

  103. Brohi K, Cohen MJ, Ganter MT, Matthay MA, Mackersie RC, Pittet JF. Acute traumatic coagulopathy: initiated by hypoperfusion: modulated through the protein C pathway? Ann Surg. 2007;245(5):812–8.

    Article  PubMed  PubMed Central  Google Scholar 

  104. Matzinger P. The danger model: a renewed sense of self. Science. 2002;296(5566):301–5.

    Article  CAS  PubMed  Google Scholar 

  105. Matzinger P. Friendly and dangerous signals: is the tissue in control? Nat Immunol. 2007;8(1):11–3.

    Article  CAS  PubMed  Google Scholar 

  106. Hauser CJ, Sursal T, Rodriguez EK, Appleton PT, Zhang Q, Itagaki K. Mitochondrial damage associated molecular patterns from femoral reamings activate neutrophils through formyl peptide receptors and P44/42 MAP kinase. J Orthop Trauma. 2010;24(9):534–8.

    Article  PubMed  PubMed Central  Google Scholar 

  107. Zhang JZ, Liu Z, Liu J, Ren JX, Sun TS. Mitochondrial DNA induces inflammation and increases TLR9/NF-kappaB expression in lung tissue. Int J Mol Med. 2014;33(4):817–24.

    CAS  PubMed  PubMed Central  Google Scholar 

  108. Zhang Q, Itagaki K, Hauser CJ. Mitochondrial DNA is released by shock and activates neutrophils via p38 map kinase. Shock. 2010;34(1):55–9.

    Article  PubMed  CAS  Google Scholar 

  109. Sursal T, Stearns-Kurosawa DJ, Itagaki K, Oh SY, Sun S, Kurosawa S, et al. Plasma bacterial and mitochondrial DNA distinguish bacterial sepsis from sterile systemic inflammatory response syndrome and quantify inflammatory tissue injury in nonhuman primates. Shock. 2013;39(1):55–62.

    PubMed  PubMed Central  Google Scholar 

  110. Lotze MT, Tracey KJ. High-mobility group box 1 protein (HMGB1): nuclear weapon in the immune arsenal. Nat Rev Immunol. 2005;5(4):331–42.

    Article  CAS  PubMed  Google Scholar 

  111. Tsung A, Tohme S, Billiar TR. High-mobility group box-1 in sterile inflammation. J Intern Med. 2014;276(5):425–43.

    Article  CAS  PubMed  Google Scholar 

  112. Peltz ED, Moore EE, Eckels PC, Damle SS, Tsuruta Y, Johnson JL, et al. HMGB1 is markedly elevated within 6 hours of mechanical trauma in humans. Shock. 2009;32(1):17–22.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. Fan J, Li Y, Levy RM, Fan JJ, Hackam DJ, Vodovotz Y, et al. Hemorrhagic shock induces NAD(P)H oxidase activation in neutrophils: role of HMGB1-TLR4 signaling. J Immunol. 2007;178(10):6573–80.

    Article  CAS  PubMed  Google Scholar 

  114. Yang H, Antoine DJ, Andersson U, Tracey KJ. The many faces of HMGB1: molecular structure-functional activity in inflammation, apoptosis, and chemotaxis. J Leukoc Biol. 2013;93(6):865–73.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Venereau E, Schiraldi M, Uguccioni M, Bianchi ME. HMGB1 and leukocyte migration during trauma and sterile inflammation. Mol Immunol. 2013;55(1):76–82.

    Article  CAS  PubMed  Google Scholar 

  116. Schiraldi M, Raucci A, Munoz LM, Livoti E, Celona B, Venereau E, et al. HMGB1 promotes recruitment of inflammatory cells to damaged tissues by forming a complex with CXCL12 and signaling via CXCR4. J Exp Med. 2012;209(3):551–63.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  117. Kim JY, Park JS, Strassheim D, Douglas I, Diaz del Valle F, Asehnoune K, et al. HMGB1 contributes to the development of acute lung injury after hemorrhage. Am J Physiol Lung Cell Mol Physiol. 2005;288(5):L958–65.

    Article  CAS  PubMed  Google Scholar 

  118. Yang R, Harada T, Mollen KP, Prince JM, Levy RM, Englert JA, et al. Anti-HMGB1 neutralizing antibody ameliorates gut barrier dysfunction and improves survival after hemorrhagic shock. Mol Med. 2006;12(4–6):105–14.

    CAS  PubMed  PubMed Central  Google Scholar 

  119. Levy RM, Mollen KP, Prince JM, Kaczorowski DJ, Vallabhaneni R, Liu S, et al. Systemic inflammation and remote organ injury following trauma require HMGB1. Am J Physiol Regul Integr Comp Physiol. 2007;293(4):R1538–44.

    Article  CAS  PubMed  Google Scholar 

  120. Tarlowe MH, Kannan KB, Itagaki K, Adams JM, Livingston DH, Hauser CJ. Inflammatory chemoreceptor cross-talk suppresses leukotriene B4 receptor 1-mediated neutrophil calcium mobilization and chemotaxis after trauma. J Immunol. 2003;171(4):2066–73.

    Article  CAS  PubMed  Google Scholar 

  121. Gentile LF, Cuenca AG, Efron PA, Ang D, Bihorac A, McKinley BA, et al. Persistent inflammation and immunosuppression: a common syndrome and new horizon for surgical intensive care. J Trauma Acute Care Surg. 2012;72(6):1491–501.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  122. Xiao W, Mindrinos MN, Seok J, Cuschieri J, Cuenca AG, Gao H, et al. A genomic storm in critically injured humans. J Exp Med. 2011;208(13):2581–90.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  123. Christou NV, Meakins JL, Gordon J, Yee J, Hassan-Zahraee M, Nohr CW, et al. The delayed hypersensitivity response and host resistance in surgical patients. 20 years later. Ann Surg. 1995;222(4):534–46. discussion 46–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  124. Vanzant EL, Lopez CM, Ozrazgat-Baslanti T, Ungaro R, Davis R, Cuenca AG, et al. Persistent inflammation, immunosuppression, and catabolism syndrome after severe blunt trauma. J Trauma Acute Care Surg. 2014;76(1):21–9. discussion 9–30.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  125. Schiffmann E, Corcoran BA, Wahl SM. N-formylmethionyl peptides as chemoattractants for leucocytes. Proc Natl Acad Sci U S A. 1975;72(3):1059–62.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  126. Eun JC, Moore EE, Banerjee A, Kelher MR, Khan SY, Elzi DJ, et al. Leukotriene b4 and its metabolites prime the neutrophil oxidase and induce proinflammatory activation of human pulmonary microvascular endothelial cells. Shock. 2011;35(3):240–4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  127. Senior RM, Skogen WF, Griffin GL, Wilner GD. Effects of fibrinogen derivatives upon the inflammatory response. Studies with human fibrinopeptide B. J Clin Invest. 1986;77(3):1014–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  128. Aziz KA, Cawley JC, Zuzel M. Platelets prime PMN via released PF4: mechanism of priming and synergy with GM-CSF. Br J Haematol. 1995;91(4):846–53.

    Article  CAS  PubMed  Google Scholar 

  129. Krauss AH, Nieves AL, Spada CS, Woodward DF. Determination of leukotriene effects on human neutrophil chemotaxis in vitro by differential assessment of cell motility and polarity. J Leukoc Biol. 1994;55(2):201–8.

    CAS  PubMed  Google Scholar 

  130. Serhan CN, Radin A, Smolen JE, Korchak H, Samuelsson B, Weissmann G. Leukotriene B4 is a complete secretagogue in human neutrophils: a kinetic analysis. Biochem Biophys Res Commun. 1982;107(3):1006–12.

    Article  CAS  PubMed  Google Scholar 

  131. Gomez-Cambronero J, Horn J, Paul CC, Baumann MA. Granulocyte-macrophage colony-stimulating factor is a chemoattractant cytokine for human neutrophils: involvement of the ribosomal p70 S6 kinase signaling pathway. J Immunol. 2003;171(12):6846–55.

    Article  CAS  PubMed  Google Scholar 

  132. Fossati G, Mazzucchelli I, Gritti D, Ricevuti G, Edwards SW, Moulding DA, et al. In vitro effects of GM-CSF on mature peripheral blood neutrophils. Int J Mol Med. 1998;1(6):943–51.

    CAS  PubMed  Google Scholar 

  133. Vercellotti GM, Yin HQ, Gustafson KS, Nelson RD, Jacob HS. Platelet-activating factor primes neutrophil responses to agonists: role in promoting neutrophil-mediated endothelial damage. Blood. 1988;71(4):1100–7.

    CAS  PubMed  Google Scholar 

  134. Casale TB, Abbas MK. Effects of various barriers on platelet-activating factor-induced neutrophil chemotaxis. J Allergy Clin Immunol. 1991;87(2):565–74.

    Article  CAS  PubMed  Google Scholar 

  135. Hauser CJ, Fekete Z, Goodman ER, Kleinstein E, Livingston DH, Deitch EA. CXCR2 stimulation primes CXCR1 [Ca2+]i responses to IL-8 in human neutrophils. Shock. 1999;12(6):428–37.

    Article  CAS  PubMed  Google Scholar 

  136. Geiser T, Dewald B, Ehrengruber MU, Clark-Lewis I, Baggiolini M. The interleukin-8-related chemotactic cytokines GRO alpha, GRO beta, and GRO gamma activate human neutrophil and basophil leukocytes. J Biol Chem. 1993;268(21):15419–24.

    CAS  PubMed  Google Scholar 

  137. Borregaard N, Cowland JB. Granules of the human neutrophilic polymorphonuclear leukocyte. Blood. 1997;89(10):3503–21.

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was funded by NIH grant R01-GM52981 and UM1-HL120877. We gratefully acknowledge contributions from our long-standing colleagues Glenn Brown, Mary Stewart, Chris Ellson, and Albert Hsu, our illustrator Iris Fung, and very helpful discussions with our collaborator Jamel El-Benna.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael B. Yaffe M.D., Ph.D. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Barrett, C.D., Yaffe, M.B. (2016). Neutrophils, Inflammation, and Innate Immunity in Trauma-Induced Coagulopathy. In: Gonzalez, E., Moore, H., Moore, E. (eds) Trauma Induced Coagulopathy. Springer, Cham. https://doi.org/10.1007/978-3-319-28308-1_10

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-28308-1_10

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-28306-7

  • Online ISBN: 978-3-319-28308-1

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics