Skip to main content

Mechanical Models of Endothelial Mechanotransmission Based on a Population of Cells

  • Conference paper
  • First Online:
Computational Biomechanics for Medicine

Abstract

Computational cell mechanics models are dependent on cell morphology. Most studies of cell mechanics use an idealized geometry or a cell-specific approach. These approaches do not consider the effect of morphological variation in cell populations. In this chapter we analyze shape variation within a population of endothelial cells, and the effect this variation has on stress estimates from finite-element modeling. We developed shape descriptors to quantify variation in the nucleus and overall cell shape in a population of human microvascular endothelial cells (nā€‰=ā€‰15). From these descriptors, we generate statistically representative spatial models that more accurately reflect the cell shape of the entire population. We also generate models with non-typical morphology that are less likely to be found in the cell population. Both of these model types were subject to finite-element analysis, and compared to illustrate how morphological variation effects stress estimates.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. P.F. Davies, C. Shi, N. DePaola, B.P. Helmke, D.C. Polacek, Hemodynamics and the focal origin of atherosclerosis. Ann. N. Y. Acad. Sci. 947(1), 7ā€“17 (2001)

    ArticleĀ  Google ScholarĀ 

  2. P.F. Davies, Hemodynamic shear stress and the endothelium in cardiovascular pathophysiology. Nat. Clin. Pract. Cardiovasc. Med. 6(1), 16ā€“26 (2009)

    ArticleĀ  Google ScholarĀ 

  3. N. Caille, O. Thoumine, Y. Tardy, J. Meister, Contribution of the nucleus to the mechanical properties of endothelial cells. J. Biomech. 35(2), 177ā€“187 (2002)

    ArticleĀ  Google ScholarĀ 

  4. R.P. Jean, C.S. Chen, A.A. Spector, Finite-element analysis of the adhesion-cytoskeleton-nucleus mechanotransduction pathway during endothelial cell rounding: axisymmetric model. J. Biomech. Eng. 127(4), 594ā€“600 (2005)

    ArticleĀ  Google ScholarĀ 

  5. M. Ferko, A. Bhatnagar, M. Garcia, P. Butler, Finite-element stress analysis of a multicomponent model of sheared and focally-adhered endothelial cells. Ann. Biomed. Eng. 35(2), 208ā€“223 (2007)

    ArticleĀ  Google ScholarĀ 

  6. M. Dabagh, P. Jalali, P.J. Butler, J.M. Tarbell, Shear-induced force transmission in a multicomponent, multicell model of the endothelium. J. R. Soc. Interface 11(98), 20140431 (2014)

    Google ScholarĀ 

  7. T. Zhao, R.F. Murphy, Automated learning of generative models for subcellular location: building blocks for systems biology. Cytometry A 71(12), 978ā€“990 (2007)

    ArticleĀ  Google ScholarĀ 

  8. T. Peng, R.F. Murphy, Image-derived, three-dimensional generative models of cellular organization. Cytometry A 79(5), 383ā€“391 (2011)

    ArticleĀ  Google ScholarĀ 

  9. T.E. Buck, J. Li, G.K. Rohde, R.F. Murphy, Toward the virtual cell: automated approaches to building models of subcellular organization ā€œlearnedā€ from microscopy images. Bioessays 34(9), 791ā€“799 (2012)

    Google ScholarĀ 

  10. E.W. Ades, F.J. Candal, R.A. Swerlick, V.G. George, S. Summers, D.C. Bosse, T.J. Lawley, HMEC-1: establishment of an immortalized human microvascular endothelial cell line. J. Invest. Dermatol. 99(6), 683ā€“690 (1992)

    ArticleĀ  Google ScholarĀ 

  11. A.L. Freitas, Open genetic algorithm toolbox. creative commons attribution non-commercial license V2.0 (2012), http://sourceforge.net/projects/gatoolbox/

  12. N. Slomka, A. Gefen, Confocal microscopy-based three-dimensional cell-specific modeling for large deformation analyses in cellular mechanics. J. Biomech. 43(9), 1806ā€“1816 (2010)

    ArticleĀ  Google ScholarĀ 

  13. S. Barreto, C.H. Clausen, C.M. Perrault, D.A. Fletcher, D. Lacroix, A multi-structural single cell model of force-induced interactions of cytoskeletal components. Biomaterials 34(26), 6119ā€“6126 (2013)

    ArticleĀ  Google ScholarĀ 

  14. H. Khayyeri, S. Barreto, D. Lacroix, Primary cilia mechanics affects cell mechanosensation: a computational study. J. Theor. Biol. 379, 38ā€“46 (2015)

    ArticleĀ  Google ScholarĀ 

  15. A. Clark, K. Dierkes, E. Paluch, Monitoring actin cortex thickness in live cells. Biophys. J. 105(3), 570ā€“580 (2013)

    ArticleĀ  Google ScholarĀ 

  16. M. Spiga, G.L. Morino, A symmetric solution for velocity profile in laminar flow through rectangular ducts. Int. Commun. Heat Mass Transfer 21(4), 469ā€“475 (1994)

    ArticleĀ  Google ScholarĀ 

  17. A.B. Mathur, G.A. Truskey, W. Monty Reichert, Atomic force and total internal reflection fluorescence microscopy for the study of force transmission in endothelial cells. Biophys. J. 78(4), 1725ā€“1735 (2000)

    ArticleĀ  Google ScholarĀ 

Download references

Acknowledgments

Yi Chung Lim is supported by a University of Auckland Doctoral Scholarship. This work was supported by a Faculty Research Development Fund grant (3702516, D.S.L.). We thank Ms. Hilary Holloway and Ms. Jacqui Ross from the Biomedical Imaging Research Unit for assistance in microscope training and image acquisition. Finally, we thank Dr. Edwin Ades and Mr. Francisco J. Candal of CDC and Dr. Thomas Lawley of Emory University for developing the HMEC-1 line and providing it to us (NCEZID-R147589-00).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David S. Long .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

Ā© 2016 Springer International Publishing Switzerland

About this paper

Cite this paper

Lim, Y.C., Cooling, M.T., McGlashan, S.R., Long, D.S. (2016). Mechanical Models of Endothelial Mechanotransmission Based on a Population of Cells. In: Joldes, G., Doyle, B., Wittek, A., Nielsen, P., Miller, K. (eds) Computational Biomechanics for Medicine. Springer, Cham. https://doi.org/10.1007/978-3-319-28329-6_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-28329-6_6

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-28327-2

  • Online ISBN: 978-3-319-28329-6

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics