Skip to main content

Intestinal Microbiota: First Barrier Against Gut-Affecting Pathogens

  • Chapter
  • First Online:
New Weapons to Control Bacterial Growth

Abstract

The complex microbial community of the gastrointestinal tract (GIT) plays an important role in GIT health and in whole body wellbeing by aiding digestion, producing nutrients, protecting against pathogens and in the maturation of the host immune system. A balanced intestinal microbiota and balanced microbe-microbe-host relationships is essential for the performance of all physiological, biochemical and enzymatic machinery in the GIT. Dietary nutrients are converted into metabolites, such as short-chain fatty acids (SCFAs) by the GIT microbiota that serve as biologically active molecules with regulatory functions in the host. When the intestinal microbiota gets unbalanced (dysbiosis) changes to this population can have major consequences. Probiotics may restore the balance of the composition of the GIT microbiota. Prebiotics can modulate the GIT microbiota inducing the growth of probiotic bacteria and can additionally produce beneficial effects on the host. Although there has been a great advance on the knowledge on the composition of the human gut microbiota, still more studies are needed to clarify the interaction of the host and the microbiota, determine the factors that govern host colonization and understand the ecological role of the common and diverse resident microbiota of the human gut.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Alberts B, Johnson A, Lewis J et al (2002) Molecular biology of the cell, 4th edn. Garland Science, New York

    Google Scholar 

  • Alkhalil M, Tate S (2010) Does endocarditis require routine coagulation screening? BMJ Case Rep

    Google Scholar 

  • Alpert C, Sczesny S, Gruhl B, Blaut M (2008) Long-term stability of the human gut microbiota in two different rat strains. Curr Issues Mol Biol 10(1–2):17–24

    CAS  PubMed  Google Scholar 

  • Aminov RI (2013) Role of archaea in human disease. Front Cell Infect Microbiol 3:42

    Article  PubMed  PubMed Central  Google Scholar 

  • Andersen LO, Bonde I, Nielsen HB, Stensvold CR (2015) A retrospective metagenomics approach to studying Blastocystis. FEMS Microbiol Ecol 91(7):fiv072. doi:10.1093/femsec/fiv072

    Google Scholar 

  • Attaluri A, Jackson M, Valestin J, Rao SS (2010) Methanogenic flora is associated with altered colonic transit but not stool characteristics in constipation without IBS. Am J Gastroenterol 105:1407–1411. doi:10.1038/ajg.2009.655

    Article  PubMed  Google Scholar 

  • Asano I, Umemura M, Fujii S, Hoshino H, Iino H (2004) Effects of mannooligosaccharides from coffee mannan on fecal microbiota and defecation in healthy volunteers. Food Sci Technol Res 10:93–97

    Article  CAS  Google Scholar 

  • Backhed F, Ley RE, Sonnenburg JL et al (2005) Host-bacterial mutualism in the human intestine. Science 307:1915–1920

    Article  PubMed  CAS  Google Scholar 

  • Bailey R (2010) Intestinal microbiota and the pathogenesis of dysbacteriosis in broiler chickens. Doctoral thesis, University of East Anglia

    Google Scholar 

  • Balcazar JL (2014) Bacteriophages as vehicles for antibiotic resistance genes in the environment. PLoS Pathog 10(7):e1004219

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Barcenilla A, Pryde SE, Martin JC et al (2000) Phylogenetic relationships of butyrate-producing bacteria from the human gut. Appl Env Microbial 66(4):1654–1661

    Article  CAS  Google Scholar 

  • Baron M (2009) A patented strain of Bacillus coagulans increased immune response to viral challenge. Postgrad Med 121(2):114–118

    Article  PubMed  Google Scholar 

  • Benmechernene Z, Fernandez-No I, Kihal M et al (2013) Recent patents on bacteriocins: food and biomedical applications. Recent Pat DNA Gene Sequences 7(1):66–73

    Article  CAS  Google Scholar 

  • Bennett KW, Eley A (1993) Fusobacteria: new taxonomy and related diseases. J Med Microbiol 39(4):246–254

    Article  CAS  PubMed  Google Scholar 

  • Berrilli F, Di Cave D, Cavallero S, D’Amelio S (2012) Interactions between parasites and microbial communities in the human gut. Front Cell Infect Microbiol 16(2):141

    Google Scholar 

  • Borrel G, O’Toole PW, Harris HM et al (2013) Phylogenomic data support a seventh order of Methylotrophic methanogens and provide insights into the evolution of Methanogenesis. Genome Biol Evol 5(10):1769–1780. doi:10.1093/gbe/evt128

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bouchard JD, Moineau S (2000) Homologous recombination between a lactococcal bacteriophage and the chromosome of its host strain. Virology 270(65–75):7

    Google Scholar 

  • Boyd EF, Brussow H (2002) Common themes among bacteriophageencoded virulence factors and diversity among the bacteriophages involved. Trends Microbiol 10:521–529

    Article  CAS  PubMed  Google Scholar 

  • Brabban AD, Hite E, Callaway TR (2005) Evolution of foodborne pathogens via temperate bacteriophage-mediated gene transfer. Foodborne Pathog Dis 2:287–303

    Article  CAS  PubMed  Google Scholar 

  • Brahe LK, Le Chatelier E, Prifti E et al. (2015) Specific gut microbiota features and metabolic markers in postmenopausal women with obesity. Nutrition & Diabetes. 5:e159. doi:10.1038/nutd.2015.9

    Google Scholar 

  • Breitbart M, Haynes M, Kelley S et al (2008) Viral diversity and dynamics in an infant gut. Res Microbiol 159:367–373

    Article  CAS  PubMed  Google Scholar 

  • Brestoff JR, Artis D (2013) Commensal bacteria at the interface of host metabolism and the immune system. Nat Immunol 14:676–684

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Brown EM, Sadarangani M, Finlay BB (2013) The role of the immune system in governing host-microbe interactions in the intestine. Nat Immunol 14(7):660–667

    Article  CAS  PubMed  Google Scholar 

  • Brussow H, Canchaya C, Hardt W-D (2004) Phages and the evolution of bacterial pathogens: from genomic rearrangements to lysogenic conversion. Microbiol Mol Biol Rev 68:560–602

    Google Scholar 

  • Buelow E et al (2014) Effects of selective digestive decontamination (SDD) on the gut resistome. J Antimicrob Chemother 69:2215–2223

    Article  CAS  PubMed  Google Scholar 

  • Calo-Mata P, Arlindo S, Boehme K et al (2008) Current applications and future trends of lactic acid bacteria and their bacteriocins for the biopreservation of aquatic food products. Food Bioprocess Technol 1(1):43–63

    Article  Google Scholar 

  • Canchaya C, Proux C, Fournous G et al (2003) Prophage genomics. Microbiol Mol Biol Rev 67:238–276

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Casjens S (2003) Prophages and bacterial genomics: what have we learned so far? Mol Microbiol 49:277–300

    Article  CAS  PubMed  Google Scholar 

  • Card RM, Warburton PJ, MacLaren N et al (2014) Application of microarray and functional-based screening methods for the detection of antimicrobial resistance genes in the microbiomes of healthy humans. PLoS ONE 9:e86428

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Castellarin M, Warren RL, Freeman JD et al (2012) Fusobacterium nucleatum infection is prevalent in human colorectal carcinoma. Genome Res 22(2):299–306

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chen HL, Cheng HC, Wu WT et al (2008) Supplementation of konjac glucomannan into a low-fiber Chinese diet promoted bowel movement and improved colonic ecology in constipated adults: a placebo-controlled, diet-controlled trial. J Am Coll Nutr 27(1):102–108

    Article  PubMed  Google Scholar 

  • Chibani-Chennoufi S, Bruttin A, Dillmann M-L, Brüssow H (2004) Phage-host interaction: an ecological perspective. J Bacteriol 186:3677–3686

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Claesson MJ, Jeffery IB, Conde S et al (2012) Gut microbiota composition correlates with diet and health in the elderly. Nature 488(7410):178–184

    Article  CAS  PubMed  Google Scholar 

  • Collins MD, Lawson PA, Willems A et al (1994) The phylogeny of genus Clostridium: proposal of five new genera and eleven new species combinations. Int J Syst Bacteriol 44:812–826

    Article  CAS  PubMed  Google Scholar 

  • Conlon M Bird, AR (2014) The impact of diet and lifestyle on gut microbiota and human health. Nutrients 7:17–44.

    Google Scholar 

  • Cui L, Morris A, Ghedin E (2013) The human mycobiome in health and disease. Genome Med 5(7):63

    Article  PubMed  PubMed Central  Google Scholar 

  • Cuskin F, Lowe EC, Temple MJ et al (2015) Human gut Bacteroidetes can utilize yeast mannan through a selfish mechanism. Nature 517(7533):165–169

    Article  CAS  PubMed  Google Scholar 

  • Cooke G, Behan J, Costello M (2006) Newly identified vitamin K-producing bacteria isolated from the neonatal faecal flora. Microb Ecol Health Dis 18(3–4):133–138

    Article  CAS  Google Scholar 

  • Dave M, Higgins PD, Middha S, Rioux KP (2012) The human gut microbiome: current knowledge, challenges, and future directions. Transl Res 160(4):246–257

    Article  CAS  PubMed  Google Scholar 

  • David LA, Maurice CF, Carmody RN, Gootenberg DB, Button JE, Wolfe BE et al (2014) Diet rapidly and reproducibly alters the human gut microbiome. Nature 505:559–563

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Davis BM, Waldor MK (2003) Filamentous phages linked to virulence of Vibrio cholerae. Curr Opin Microbiol 6:35–42

    Article  CAS  PubMed  Google Scholar 

  • de Vrese M, Schrezenmeir J (2008) Probiotics, prebiotics, and synbiotics. In: Food biotechnology. Springer, Berlin, pp 1–66

    Google Scholar 

  • den Besten G, van Eunen K, Groen AK et al (2013) The role of short-chain fatty acids in the interplay between diet, gut microbiota, and host energy metabolism. J Lipid Res 54(9):2325–2340

    Article  CAS  Google Scholar 

  • Denoeud F, Roussel M, Noel B, Wawrzyniak I et al (2011) Genome sequence of the stramenopile Blastocystis, a human anaerobic parasite. Genome Biol 12(3):R29

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dethlefsen L, Huse S, Sogin ML, Relman DA (2008) The pervasive effects of an antibiotic on the human gut microbiota, as revealed by deep 16S rRNA sequencing. PLoS Biol 6(11):e280

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Derrien M, Vaughan EE, Plugge CM, de Vos WM (2004) Akkermansia muciniphila gen. nov., sp. nov., a human intestinal mucin-degrading bacterium. Int J Syst Evol Microbiol 54(Pt 5):1469–1476

    Article  CAS  PubMed  Google Scholar 

  • Desiere F, McShan WM, van Sinderen D, Ferretti JJ, Brussow H (2001) Comparative genomics reveals close genetic relationships between phages from dairy bacteria and pathogenic streptococci: evolutionary implications for prophage-host interactions. Virology 288:325–341

    Article  CAS  PubMed  Google Scholar 

  • Dinleyici EC, Eren M, Ozen M et al (2012) Effectiveness and safety of Saccharomyces boulardii for acute infectious diarrhea. Expert Opin Biol Ther 12:395–410

    Article  CAS  PubMed  Google Scholar 

  • Drasar BS (1991) The bacterial flora of the intestine. In: Rowland IR (ed). Role of the gut flora in toxicity and cancer, Chap. 2. Academic Press, New York, pp 23–38

    Google Scholar 

  • Dridi B, Raoult D, Drancourt M (2011) Archaea as emerging organisms in complex human microbiomes. Anaerobe 17:56–63

    Article  PubMed  Google Scholar 

  • Dubourg G, Lagier JC, Armougom F et al (2013) High-level colonisation of the human gut by Verrucomicrobia following broad-spectrum antibiotic treatment. Int J Antimicrob Agents 41(2):149–155

    Article  CAS  PubMed  Google Scholar 

  • Duncan SH, Hold GL, Barcenilla A et al (2002) Roseburia intestinalis sp. nov, a novel saccharolytic, butyrate-producing bacterium from human faeces. Int J Syst Evol Microbiol 52(5):1615–1620

    CAS  PubMed  Google Scholar 

  • Duncan SH, Belenguer A, Holtrop G et al (2007) Reduced dietary intake of carbohydrates by obese subjects results in decreased concentrations of butyrate and butyrate-producing bacteria in feces. Appl Environ Microbiol 73:1073–1078

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dutilh BE, Cassman N, McNair K et al (2014) A highly abundant bacteriophage discovered in the unknown sequences of human faecal metagenomes. Nat Commun 5:4498

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Eckburg PB, Bik EM, Bernstein CN et al (2005) Diversity of the human intestinal microbial flora. Science 308:1635–1638

    Article  PubMed  PubMed Central  Google Scholar 

  • Eeckhaut V, Machiels K, Perrier C et al (2012) Butyricicoccus pullicaecorum in inflammatory bowel disease. Gut, gutjnl-2012

    Google Scholar 

  • Engen PA et al (2015) The gastrointestinal microbiome. Alcohol Res 37(2):223–236

    PubMed  PubMed Central  Google Scholar 

  • Evans H, Mitre E (2015) Worms as therapeutic agents for allergy and asthma: understanding why benefits in animal studies have not translated into clinical success. J Allergy Clin Immunol 135:343–353

    Article  PubMed  Google Scholar 

  • Farmer AD, Mohammed SD, Dukes GE et al (2014) Caecal pH is a biomarker of excessive colonic fermentation. World J Gastroenterol WJG 20(17):5000

    Article  CAS  PubMed  Google Scholar 

  • Ferreira I et al (2013) Hookworm excretory/secretory products induce interleukin-4 (IL-4)+IL-10+CD4+T cell responses and suppress pathology in a mouse model of colitis. Infect Immun 81:2104–2111

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Finkbeiner SR, Allred AF, Tarr PI et al (2008) Metagenomic analysis of human diarrhea: viral detection and discovery. PLoS Pathog 4:e1000011. doi:10.1371/journal.ppat.1000011

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Finkbeiner SR, Le BM, Holtz LR et al (2009) Detection of newly described astrovirus MLB1 in stool samples from children. Emerg Infect Dis 15:441–444

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fletcher SM, Stark D, Harkness J, Ellisa J (2012) Enteric protozoa in the developed world: a public health perspective clin. Microbiol Rev 25(3):420–449

    Article  Google Scholar 

  • Focà A, Liberto MC, Quirino A et al (2015) Gut inflammation and immunity: what is the role of the human gut virome? Mediators Inflamm 2015:326032

    PubMed  PubMed Central  Google Scholar 

  • Fukuda S, Toh H, Hase K, Oshima K et al (2011) Bifidobacteria can protect from enteropathogenic infection through production of acetate. Nature 469(7331):543–547

    Article  CAS  PubMed  Google Scholar 

  • Frémont M, Coomans D, Massart S, De Meirleir K (2013) High-throughput 16S rRNA gene sequencing reveals alterations of intestinal microbiota in myalgic encephalomyelitis/chronic fatigue syndrome patients. Anaerobe 22:50–56

    Article  PubMed  CAS  Google Scholar 

  • Forslund K, Sunagawa S, Coelho LP, Bork P (2014) Metagenomic insights into the human gut resistome and the forces that shape it. BioEssays 36:316–329

    Article  CAS  PubMed  Google Scholar 

  • Francino MP (2014) Early development of the gut microbiota immune health pathogens. Pathog 3(3):769–790

    Article  CAS  Google Scholar 

  • Fujimura KE, Slusher NA, Cabana MD, Lynch SV (2010) Role of the gut microbiota in defining human health. Expert Rev Anti Infect Ther 4:435–454

    Article  Google Scholar 

  • Furnari M, Savarino E, Bruzzone L et al (2012) Reassessment of the role of methane production between irritable bowel syndrome and functional constipation. J Gastrointest Liver Dis 21:157–163

    Google Scholar 

  • Gabbard SL, Lacy BE, Levine GM, Crowell MD (2014) The impact of alcohol consumption and cholecystectomy on small intestinal bacterial overgrowth. Dig Dis Sci 59(3):638–644

    Article  CAS  PubMed  Google Scholar 

  • Gaci N, Borrel G, Tottey W et al (2014) Archaea and the human gut: new beginning of an old story. World J Gastroenterol WJG 20(43):16062

    Article  CAS  PubMed  Google Scholar 

  • Gaze S et al (2012) Characterising the mucosal and systemic immune responses to experimental human hookworm infection. PLoS Pathog 8:e1002520

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Geirnaert A, Steyaert A, Eeckhaut V et al (2014) Butyricicoccus pullicaecorum, a butyrate producer with probiotic potential, is intrinsically tolerant to stomach and small intestine conditions. Anaerobe 30:70–74

    Article  CAS  PubMed  Google Scholar 

  • Geirnaert A, Wang J, Tinck M et al (2015) Interindividual differences in response to treatment with butyrate-producing Butyricicoccus pullicaecorum 25–3T studied in an in vitro gut model. FEMS Microbiol Ecol 91(6):fiv054. doi:10.1093/femsec/fiv054

  • Gerritsen J, Smidt H, Rijkers GT, de Vos WM (2011) Intestinal microbiota in human health and disease: the impact of probiotics. Genes Nutr 6(3):209–240

    Article  PubMed  PubMed Central  Google Scholar 

  • Giacomin PR, Moy RH, Noti M et al (2015). Epithelial-intrinsic IKKα expression regulates group 3 innate lymphoid cell responses and antibacterial immunity. ‎J Exp Med 212:1513–1528

    Google Scholar 

  • Gibson GR, Roberfroid MB (1995) Dietary modulation of the human colonic microbiota: introducing the concept of prebiotics. J Nutr 125:1401–1412

    CAS  PubMed  Google Scholar 

  • Gibson MK, Pesesky MW, Dantas G (2014) The yin and yang of bacterial resilience in the human gut microbiota. J Mol Biol 426(23):3866–3876

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gómez-Moreno R, Robledo IE, Baerga-Ortiz A (2014) Direct detection and quantification of bacterial genes associated with inflammation in dna isolated from stool. Adv Microbiol 4(15):1065–1075

    Article  PubMed  PubMed Central  Google Scholar 

  • Gosiewski T et al (2014) Quantitative evaluation of fungi of the genus Candida in the feces of adult patients with type 1 and 2 diabetes—a pilot study. Gut Pathog 6:43

    Article  PubMed  PubMed Central  Google Scholar 

  • Gouba N, Raoult D, Drancourt M (2013) Plant and fungal diversity in gut microbiota as revealed by molecular and culture investigations. PLoS ONE 8(3):e59474

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Guinane CM, Cotter PD (2013) Role of the gut microbiota in health and chronic gastrointestinal disease: understanding a hidden metabolic organ. Therap Adv Gastroenterol 6(4):295–308

    Article  PubMed  PubMed Central  Google Scholar 

  • Gupta R, Prasad Y (2011) Efficacy of polyvalent bacteriophage p-27/HP to control multidrug resistant Staphylococcus aureus associated with human infections. Curr Microbiol 62:255–260

    Article  CAS  PubMed  Google Scholar 

  • Hakansson A, Molin G (2011) Gut microbiota and inflammation. Nutr 3(6):637–682

    Google Scholar 

  • Hayes KS, Bancroft AJ, Goldrick M et al (2010) Exploitation of the intestinal microbiota by the parasitic nematode Trichuris muris. Science 328:1391–1394

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hebestreit HF (2001) Proteomics: an holistic analysis of nature’s proteins. Curr Opin Pharmacol 1(5):513–520

    Article  CAS  PubMed  Google Scholar 

  • Hehemann JH, Correc G, Barbeyron T et al (2010) Transfer of carbohydrate-active enzymes from marine bacteria to Japanese gut microbiota. Nature 464:908–912

    Google Scholar 

  • Hemarajata P, Versalovic J (2013) Effects of probiotics on gut microbiota: mechanisms of intestinal immunomodulation and neuromodulation. Therap Adv Gastroenterol 6(1):39–51

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hofer U (2013) Variation in the gut virome. Nat Rev Microbiol 11:596

    CAS  PubMed  Google Scholar 

  • Hoffmann C, Dollive S, Grunberg S et al (2013) Archaea and fungi of the human gut microbiome: correlations with diet and bacterial residents. PLoS ONE 17. 8(6):e66019

    Google Scholar 

  • Hold GL, Pryde SE, Russell VJ et al (2002) Assessment of microbial diversity in human colonic samples by 16S rDNA sequence analysis. FEMS Microbiol Ecol 39(1):33–39

    Article  CAS  PubMed  Google Scholar 

  • Holtz LR, Cao S, Zhao G et al (2014) Geographic variation in the eukaryotic virome of human diarrhea. Virology 468–470:556–564

    Article  PubMed  CAS  Google Scholar 

  • Hosseini SV, Arlindo S, Böhme K et al (2009) Molecular and probiotic characterization of bacteriocin-producing Enterococcus faecium strains isolated from nonfermented animal foods. J Appl Microbiol 107(4):1392–1403

    Article  CAS  PubMed  Google Scholar 

  • Hooper LV, Midtvedt T, Gordon JI (2002) How host-microbial interactions shape the nutrient environment of the mammalian intestine. Annu Rev Nutr 22:283–307

    Article  CAS  PubMed  Google Scholar 

  • Hooper LV, Littman DR, Macpherson AJ (2012) Interactions between the microbiota and the immune system. Science 336:1268–1273

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Horosheva TV, Vodyanoy V, Sorokulova I (2014) Efficacy of Bacillus probiotics in prevention of antibiotic-associated diarrhoea: a randomized, double-blind, placebo-controlled clinical trial. JMM Case Rep 1(3):e004036

    Article  Google Scholar 

  • Hu Y et al (2013) Metagenome-wide analysis of antibiotic resistance genes in a large cohort of human gut microbiota. Nat Commun 4:2151

    PubMed  Google Scholar 

  • Hugenholtz P, Goebel BM, Pace NR (1998) Impact of culture-independent studies on the emerging phylogenetic view of bacterial diversity. J Bacteriol 180:4765–4774

    CAS  PubMed  PubMed Central  Google Scholar 

  • Hullar MA, Fu BC (2014) Diet, the gut microbiome, and epigenetics. Cancer J (Sudbury Mass) 20(3):170

    Google Scholar 

  • Hyman P, Abedon ST (2010) Bacteriophage host range and bacterial resistance. Adv Appl Microbiol 70:217–248

    Article  CAS  PubMed  Google Scholar 

  • Inal J (2003) Phage therapy: a reappraisal of bacterio-phages as antibiotics. Arch Immunol Ther Exp 51:237–244

    CAS  Google Scholar 

  • Jangi S, Lamont JT (2010) Asymptomatic colonization by Clostridium difficile in infants: implications for disease in later life. J Pediatr Gastroenterol Nutr 51:2–7

    Article  PubMed  Google Scholar 

  • Jassim SAA, Limoges RG (2014) Natural solution to antibiotic resistance: bacteriophages ‘the living drugs’. World J Microbiol Biotechnol 30(8):2153–2170

    Article  PubMed  PubMed Central  Google Scholar 

  • Jeurink PV, van Bergenhenegouwen J, Jimenez E et al (2013) Human milk: a source of more life than we imagine. Benef Microbes 4:17–30

    Article  CAS  PubMed  Google Scholar 

  • Kamada N, Chen GY, Inohara N, Núñez G (2013) Control of pathogens and pathobionts by the gut microbiota. Nat Immunol 14(7):685–690

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kau AL, Ahern PP, Griffin NW et al (2011) Human nutrition, the gut microbiome and the immune system. Nature 474(7351):327–336

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Keen EC (2012) Phage therapy: concept to cure. Front Microbiol 3:238

    PubMed  PubMed Central  Google Scholar 

  • Keithley J, Swanson B (2005) Glucomannan and obesity: a critical review. Altern Ther Health Med 11(6):30–34

    PubMed  Google Scholar 

  • Kelesidis T, Pothoulakis C (2012) Efficacy and safety of the probiotic Saccharomyces boulardii for the prevention and therapy of gastrointestinal disorders. Ther Adv Gastroenterol 5(2):111–125

    Article  Google Scholar 

  • Khosravi Y, Dieye Y, Poh BH, Ng CG, Loke MF, Goh KL, Vadivelu J (2014) Culturable bacterial microbiota of the stomach of Helicobacter pylori positive and negative gastric disease patients. Sci World J 2014:610421

    Google Scholar 

  • Koren O et al (2011) Human oral, gut, and plaque microbiota in patients with atherosclerosis. Proc Natl Acad Sci 108(Supplement 1):4592–4598

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kuitunen M, Saukkonen T, Ilonen J et al (2002) Intestinal permeability to mannitol and lactulose in children with type 1 diabetes with the HLA-DQB1 02 allele. Autoimmun 35(5):365–368, 42

    Google Scholar 

  • Kurokawa K, Itoh T, Kuwahara T et al (2007) Comparative metagenomics revealed commonly enriched gene sets in human gut microbiomes. DNA Res 14:169–181

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lawley TD, Clare S, Walker AW et al (2012) Targeted restoration of the intestinal microbiota with a simple, defined bacteriotherapy resolves relapsing Clostridium difficile disease in mice. PLoS Pathog 8(10):e1002995

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lawley TD, Walker AW (2013) Intestinal colonization resistance. Immunol 138(1):1–11

    Article  CAS  Google Scholar 

  • Lawrence JG, Hendrix RW, Casjens S (2001) Where are the pseudogenes in bacterial genomes? Trends Microbiol 9:535–540

    Article  CAS  PubMed  Google Scholar 

  • Lagier J, Armougom F, Million M et al (2012) Microbial culturomics: paradigm shift in the human gut microbiome study. Clin Microbiol Infect 18:1185–1193

    Article  CAS  PubMed  Google Scholar 

  • Lee KM, Paik CN, Chung WC et al (2013) Breath methane positivity is more common and higher in patients with objectively proven delayed transit constipation. Eur J Gastroenterol Hepatol 25(6):726–732

    Article  PubMed  Google Scholar 

  • Lee SC, San Tang M, Lim YA et al (2014) Helminth colonization is associated with increased diversity of the gut microbiota. PLoS Neglected Trop Dis 8:e2880. doi:10.1371/journal.pntd.0002880

    Article  Google Scholar 

  • Li Q, Wang C, Zhang Q et al (2012) Use of 18S ribosomal DNA polymerase chain reaction-denaturing gradient gel electrophoresis to study composition of fungal community in 2 patients with intestinal transplants. Hum Pathol 43:1273–1281

    Article  PubMed  CAS  Google Scholar 

  • Li Q, Wang C, Tang C et al (2014) Dysbiosis of gut fungal microbiota is associated with mucosal inflammation in Crohn’s disease. J Clin Gastroenterol 48(6):513

    CAS  PubMed  PubMed Central  Google Scholar 

  • León-Cabrera S, Callejas BE, Ledesma-Soto Y et al (2014) Extraintestinal helminth infection reduces the development of colitis-associated tumorigenesis. Int J Biol Sci 10(9):948

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Loc-Carrillo C, Abedon ST (2011) Pros and cons of phage therapy. Bacteriophage 1(2):111–114

    Article  PubMed  PubMed Central  Google Scholar 

  • Logan AC, Rao AV, Irani D (2003) Chronic fatigue syndrome: lactic acid bacteria may be of therapeutic value. Med Hypotheses 60(6):915–923

    Article  PubMed  Google Scholar 

  • Lopez-Legarrea P, Fuller NR, Zulet MA et al (2014) The influence of Mediterranean, carbohydrate and high protein diets on gut microbiota composition in the treatment of obesity and associated inflammatory state. Asia Pac J Clin Nutr 23:360–368

    Google Scholar 

  • Lozupone CA, Stombaugh JI, Gordon JI et al (2012) Diversity, stability and resilience of the human gut microbiota. Nature 489:220–230

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lowy I, Molrine DC, Leav BA et al (2010) Treatment with monoclonal antibodies against Clostridium difficile toxins. N Engl J Med 362:197–205

    Article  CAS  PubMed  Google Scholar 

  • Lu TK, Koeris MS (2011) The next generation of bacteriophage therapy. Curr Opin Microbiol 14:524–531

    Article  PubMed  Google Scholar 

  • Luan C, Xie L, Yang X et al (2015) Dysbiosis of fungal microbiota in the intestinal mucosa of patients with colorectal adenomas. Sci Rep 5:7980

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lynch MF, Tauxe RV, Hedberg CW (2009) The growing burden of foodborne outbreaks due to contaminated fresh produce: risks and opportunities. Epidemiol Infect 137:307–315

    Article  CAS  PubMed  Google Scholar 

  • Mai V, Draganov PV (2009) Recent advances and remaining gaps in our knowledge of associations between gut microbiota and human health. World J Gastroenterol 15:81–85

    Google Scholar 

  • Mattarelli P, Brandi G, Calabrese C et al (2014) Occurrence of Bifidobacteriaceae in human hypochlorhydria stomach. Microb Ecol Health Dis 25. doi:10.3402/mehd.v25.21379

  • Mann NH (2008) The potential of phages to prevent MRSA infections. Res Microbiol 159:400–405. doi:10.1016/j.resmic.2008.04.003

    Article  CAS  PubMed  Google Scholar 

  • Macfarlane GT, Steed H, Macfarlane S (2008) Bacterial metabolism and health-related effects of galacto-oligosaccharides and other prebiotics. J Appl Microbiol 104(2):305–344

    CAS  PubMed  Google Scholar 

  • Martin FPJ, Wang Y, Sprenger N, et al (2008) Probiotic modulation of symbiotic gut microbial–host metabolic interactions in a humanized microbiome mouse model. Mol Syst Biol 4(1)

    Google Scholar 

  • McFarland LV (2010) Systematic review and meta-analysis of Saccharomyces boulardii in adult patients. World J Gastroenterol 16:2202–2222

    Article  PubMed  PubMed Central  Google Scholar 

  • Mihajlovski A, Doré J, Levenez F et al (2010) Molecular evaluation of the human gut methanogenic archaeal microbiota reveals an age-associated increase of the diversity. Environ Microbiol Rep 2(2):272–280

    Article  CAS  PubMed  Google Scholar 

  • Minot S, Sinha R, Chen J et al (2011) The human gut virome: inter-individual variation and dynamic response to diet. Genome Res 21(10):1616–1625

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Minot S, Bryson A, Chehoud C et al (2013) Rapid evolution of the human gut virome. Proc Natl Acad Sci USA 110:12450–12455

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mirpuri J, Raetz M, Sturge CR et al (2014) Proteobacteria-specific IgA regulates maturation of the intestinal microbiota. Gut Microbes 5(1):28–39

    Article  PubMed  PubMed Central  Google Scholar 

  • Mishra PK, Palma M, Bleich D et al (2014) Systemic impact of intestinal helminth infections. Mucosal Immunol 7(4):753–762

    CAS  PubMed  Google Scholar 

  • Moreira LR, Filho EX (2008) An overview of mannan structure and mannan-degrading enzyme systems. Appl Microbiol Biotechnol 79(2):165–178

    Article  CAS  PubMed  Google Scholar 

  • Morgan XC, Huttenhower C (2014) Metagenomic analytic techniques for studying the intestinal microbiome. Gastroenterology 6(6):1437–1448

    Article  CAS  Google Scholar 

  • Mortimer K, Brown A, Feary J et al (2006) Dose-ranging study for trials of therapeutic infection with Necator americanus in humans. Am J Trop Med Hyg 75:914–920

    CAS  PubMed  Google Scholar 

  • Muniesa M, Colomer-Lluch M and Jofre J (2013) Could bacteriophages transfer antibiotic resistance genes from environmental bacteria to human-body associated bacterial populations? Mob Genet Elements 3:739–751

    Google Scholar 

  • Nardone G, Compare D (2015) The human gastric microbiota: is it time to rethink the pathogenesis of stomach diseases? United Eur Gastroenterol J 3(3):255–260

    Article  CAS  Google Scholar 

  • Neu J, Rushing J (2011) Cesarean versus vaginal delivery: long term infant outcomes and the hygiene hypothesis. Clin Perinatol 38(2):321–331

    Article  PubMed  PubMed Central  Google Scholar 

  • Neu J (2013) The microbiome and its impact on disease in the preterm patient. Curr Pediatr Rep 1(4):215–221

    Article  PubMed  PubMed Central  Google Scholar 

  • Neish AS (2009) Microbes in gastrointestinal health and disease. Gastroenterology 136:65–80

    Article  PubMed  PubMed Central  Google Scholar 

  • Novik GI, Astapovich NI, Ryabaya NE (2007) Production of hydrolases by lactic acid bacteria and bifidobacteria and their antibiotic resistance. Appl Biochem Microbiol 43(2):164–172

    Article  CAS  Google Scholar 

  • O’Hara AM, Shanahan F (2006) The gut flora as a forgotten organ. EMBO Rep 7(7):688–693

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Oever JT, Netea MG (2014) The bacteriome-mycobiome interaction and antifungal host defense. Eur J Immunol 44(11):3182–3191

    Article  PubMed  CAS  Google Scholar 

  • Ogilvie LA, Jones BV (2015) The human gut virome: a multifaceted majority. Front Microbiol 6:918

    PubMed  PubMed Central  Google Scholar 

  • Ott ST, Musfeldt M, Ullmann U et al (2004) Quantification of intestinal bacterial populations by real-time pcr with a universal primer set and minor groove binder probes: a global approach to the enteric flora. J Clin Microbiol 42(6):2566–2572

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ott SJ, Kühbacher T, Musfeldt M et al (2008) Fungi and inflammatory bowel diseases: alterations of composition and diversity. Scand J Gastroenterol 43(7):831–841

    Article  CAS  PubMed  Google Scholar 

  • Paliy O, Agans R (2012) Application of phylogenetic microarrays to interrogation of human microbiota. FEMS Microbiol Ecol 79(1):2–11

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Palmer C, Bik EM, Di Giulio DB et al (2007) Development of the human infant intestinal microbiota. PLoS Biol 5:e177

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Parfrey LW et al (2011) Microbial eukaryotes in the human microbiome: ecology, evolution, and future directions. Front Microbiol 2:153

    PubMed  PubMed Central  Google Scholar 

  • Parracho HM, Bingham MO, Gibson GR, McCartney AL (2005) Differences between the gut microbiota of children with autistic spectrum disorders and that of healthy children. J Med Microbiol 54(10):987–991

    Article  PubMed  Google Scholar 

  • Pérez-Cobas AE, Artacho A, Knecht H et al (2013) Differential effects of antibiotic therapy on the structure and function of human gut microbiota. PLoS ONE 8:e80201

    Article  PubMed  PubMed Central  Google Scholar 

  • Petrikkos G, Skiada A, Lortholary O et al (2012) Epidemiology and clinical manifestations of mucormycosis. Clin Infect Dis 54(suppl 1):S23–S34

    Article  PubMed  Google Scholar 

  • Potrykus J, Mahaney B, White RL, Bearne SL (2007) Proteomic investigation of glucose metabolism in the butyrate-producing gut anaerobe Fusobacterium varium. Proteomics 7(11):1839–1853

    Article  CAS  PubMed  Google Scholar 

  • Pryde SE, Duncan SH, Hold GL et al (2002) The microbiology of butyrate formation in the human colon. FEMS Microbiol Lett 217(2):133–139

    Article  CAS  PubMed  Google Scholar 

  • Qin J, Li R, Raes J et al (2010) A human gut microbial gene catalogue established by metagenomic sequencing. Nature 464:59–65

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Qin J, Li Y, Cai Z et al (2012) A metagenome-wide association study of gut microbiota in type 2 diabetes. Nature 490:55–60

    Article  CAS  PubMed  Google Scholar 

  • Quigley EM (2010) Prebiotics and probiotics: modifying and mining the microbiota. Pharmacol Res 61:213–218

    Article  PubMed  Google Scholar 

  • Rajilić-Stojanović M, Biagi E, Heilig HG et al (2011) Global and deep molecular analysis of microbiota signatures in fecal samples from patients with irritable bowel syndrome. Gastroenterology 141(5):1792–1801

    Article  PubMed  CAS  Google Scholar 

  • Reddy A, Fried B (2009) An update on the use of helminths to treat Crohn’s and other autoimmune diseases. Parasitol Res 104(2):217–221

    Article  PubMed  Google Scholar 

  • Reyes A, Semenkovich NP, Whiteson K et al (2012) Going viral: next-generation sequencing applied to phage populations in the human gut. Nat Rev Microbiol 10:607–617

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Reynolds LA et al‎ (2015) Cohabitation in the intestine: interactions among helminth. J Immunol 195(9):4059–66

    Google Scholar 

  • Reuter G (2001) The Lactobacillus and Bifidobacterium microbiota of the human intestine: composition and succession. Curr Issues Intest Microbiol 2(2):43–53

    CAS  PubMed  Google Scholar 

  • Rodríguez MM, Perez D, Chaves FJ et al (2015) Obesity changes the human gut mycobiome. Sci Rep 5:14600

    Article  CAS  Google Scholar 

  • Romano-Keeler J, Weitkamp J-H (2015) Maternal influences on fetal microbial colonization and immune development. Pediatr Res 77:189–195

    Article  PubMed  PubMed Central  Google Scholar 

  • Rupa P, Mine Y (2012) Recent advances in the role of probiotics in human inflammation and gut health. J Agric Food Chem 60(34):8249–8256

    Article  CAS  PubMed  Google Scholar 

  • Salazar N et al (2015) Exopolysaccharides produced by lactic acid bacteria and bifidobacteria as fermen substrates by the intestinal microbiota. Crit Rev Food Sci Nutr. doi:10.1080/10408398.2013.770728

    PubMed  Google Scholar 

  • Samsel A, Seneff S (2013) Glyphosate’s suppression of cytochrome P450 enzymes and amino acid biosynthesis by the gut microbiome: Pathways to modern diseases. Entropy 15(4):1416–1463

    Article  CAS  Google Scholar 

  • Scarpellini E, Ianiro G, Attilivv F et al (2015) The human gut microbiota and virome: Potential therapeutic implications. Dig Liver Dis. doi:10.1016/j.dld.2015.07.008

    PubMed  Google Scholar 

  • Schnoeller C, Rausch S, Pillai S et al (2008) A helminth immunomodulator reduces allergic and inflammatory responses by induction of IL-10-producing macrophages. J Immunol 180:4265–4272

    Article  CAS  PubMed  Google Scholar 

  • Scholz-Ahrens KE, Schrezenmeir J (2007) Inulin and oligofructose and mineral metabolism: the evidence from animal trials. J Nutr 137(11 Suppl):2513S–2523S

    CAS  PubMed  Google Scholar 

  • Scholz-Ahrens KE, Ade P, Marten B et al (2007) Prebiotics, probiotics, and synbiotics affect mineral absorption, bone mineral content, and bone structure. J Nutr 137(3 Suppl 2):838S–846S

    CAS  PubMed  Google Scholar 

  • Scott KP, Martin JC, Duncan SH, Flint HJ (2014) Prebiotic stimulation of human colonic butyrate-producing bacteria and bifidobacteria, in vitro. FEMS Microbial Ecol 87(1):30–40

    Article  CAS  Google Scholar 

  • Sears CL (2005) A dynamic partnership: celebrating our gut flora. Anaerobe 11(5):247–251

    Article  PubMed  Google Scholar 

  • Sokol H, Seksik P (2010) The intestinal microbiota in inflammatory bowel diseases: time to connect with the host. Curr Opin Gastroenterol 26:327–331

    Article  PubMed  Google Scholar 

  • Stearns JC et al (2011) Bacterial biogeography of the human digestive tract. Sci Rep 1:170

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Suttle CA, Chan AM (1994) Dynamics and distribution of cyanophages and their effect on marine Synechococcus spp. Appl Environ Microbiol 60:3167–3174

    CAS  PubMed  PubMed Central  Google Scholar 

  • Takaishi H, Matsuki T, Nakazawa A et al (2008) Imbalance in intestinal microbiota constitution could be involved in the pathogenesis of inflammatory bowel disease. Int J Med Microbiol 298:463–472

    Article  CAS  PubMed  Google Scholar 

  • Tannock GW (2001) Molecular assessment of intestinal microbiota. Am J Clin Nutr 73:410S–414S

    CAS  PubMed  Google Scholar 

  • The Human Microbiome Project Consortium (2012a) Structure, function and diversity of the healthy human microbiome. Nature 486:207–214

    Article  PubMed Central  CAS  Google Scholar 

  • The Human Microbiome Project Consortium (2012b) A framework for human microbiome research. Nature 486:215–221

    Article  CAS  Google Scholar 

  • Torres MF, Uetanabaro AP, Costa AF et al (2000) Influence of bacteria from the duodenal microbiota of patients with symptomatic giardiasis on the pathogenicity of Giardia duodenalis in gnotoxenic mice. J Med Microbiol 49(3):209–215

    Article  CAS  PubMed  Google Scholar 

  • Tsuji S, Kawai N, Tsujii M, Kawano S, Hori M (2003) Inflammation related promotion of gastrointestinal carcinogenesis-a perigenetic pathway. Aliment Pharmacol Ther 18(s1):82–89

    Article  CAS  PubMed  Google Scholar 

  • Turnbaugh PJ, Hamady M, Yatsunenko T et al (2009) A core gut microbiome in obese and lean twins. Nature 457:480–484

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Van Immerseel F, Ducatelle R, De Vos M et al (2010) Butyric acid-producing anaerobic bacteria as a novel probiotic treatment approach for inflammatory bowel disease. J Med Microbiol 59(2):141–143

    Article  PubMed  Google Scholar 

  • Van Schaik W (2015) The human gut resistome. Phil Trans R Soc B 370:20140087

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • van Tongeren SP, Slaets JP, Harmsen HJM et al (2005) Fecal microbiota composition and frailty. Appl Environ Microbiol 71:6438–6442

    Google Scholar 

  • Vanhoutvin SA, Troost FJ, Hamer HM, Lindsey PJ et al  (2009) Butyrate-induced transcriptional changes in human colonic mucosa. PloS One 4:e6759

    Google Scholar 

  •  Walker AW, Martin JC, Scott P et al (2015) 16S rRNA gene-based profiling of the human infant gut microbiota is strongly influenced by sample processing and PCR primer choice. Microbiome 3:26

    Article  PubMed  PubMed Central  Google Scholar 

  • Waller AS, Yamada T, Kristensen DM et al (2014) Classification and quantification of bacteriophage taxa in human gut metagenomes. ISME J 8:1391–1402

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wan LYM, Chen ZJ, Shah NP, El-Nezami H (2015) Modulation of intestinal epithelial defense responses by probiotic bacteria. Critical reviews in food science and nutrition, 00–00

    Google Scholar 

  • Wang M, Ahrné S, Jeppsson B, Molin G (2005) Comparison of bacterial diversity along the human intestinal tract by direct cloning and sequencing of 16S rRNA genes. FEMS Microbiol Ecol 54(2):219–231

    Article  CAS  PubMed  Google Scholar 

  • Wang ZK, Yang YS, Stefka AT et al (2014) Fungal microbiota and digestive diseases. Aliment Pharmacol Ther 39(8):751–766

    Article  CAS  PubMed  Google Scholar 

  • Wang WL, Xu SY, Ren ZG et al (2015) Application of metagenomics in the human gut microbiome. World J Gastroenterol 21(3):803–814

    PubMed  PubMed Central  Google Scholar 

  • Waterbury JB, Valois FW (1993) Resistance to co-occurring phages enables marine Synechococcus communities to coexist with cyanophages abundant in seawater. Appl Environ Microbiol 59:3393–3399

    CAS  PubMed  PubMed Central  Google Scholar 

  • Weaver CM (2005) Inulin, oligofructose and bone health: experimental approaches and mechanisms. Br J Nutr 93(Suppl 1):S99–S103

    Article  CAS  PubMed  Google Scholar 

  • Wiggins BA, Alexander M (1985) Minimum bacterial density for bacteriophage replication: implications for significance of bacteriophages in natural ecosystems. Appl Environ Microbiol 49:19–23

    CAS  PubMed  PubMed Central  Google Scholar 

  • Wilson ID, Nicholson JK (2015) The modulation of drug efficacy and toxicity by the gut microbiome. In: Metabonomics and gut microbiota in nutrition and disease. Springer, London, pp 323–341

    Google Scholar 

  • Wu GD, Chen J, Hoffmann C, Bittinger K et al (2011) Linking long-term dietary patterns with gut microbial enterotypes. Science 334:105–108

    Google Scholar 

  • Yatsunenko T, Rey FE, Manary MJ et al (2012) Human gut microbiome viewed across age and geography. Nature 486:222–227

    CAS  PubMed  PubMed Central  Google Scholar 

  • Yuan S, Cohen DB, Ravel J, Abdo Z, Forney LJ (2012) Evaluation of methods for the extraction and purification of DNA from the human microbiome. PLoS ONE 7:e33865. doi:10.1371/journal.pone.0033865

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zoetendal EG, Rajilic-Stojanovic M, de Vos WM (2008) High-throughput diversity and functionality analysis of the gastrointestinal tract microbiota. Gut 57(11):1605–1615

    Article  CAS  PubMed  Google Scholar 

  • Zwolinska-Wcislo M, Budak A, Bogdal J et al (2001) Fungal colonization of gastric mucosa and its clinical relevance. Med Sci Monit 7:982–988

    CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was funded by a research project from the Spanish Ministry of Economy and Competitiveness Project AGL2013-48244-R and by the European Regional Development Fund (ERDF) (2007–2013).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pilar Calo-Mata .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Calo-Mata, P., Ageitos, J.M., Böhme, K., Barros-Velázquez, J. (2016). Intestinal Microbiota: First Barrier Against Gut-Affecting Pathogens. In: Villa, T., Vinas, M. (eds) New Weapons to Control Bacterial Growth. Springer, Cham. https://doi.org/10.1007/978-3-319-28368-5_12

Download citation

Publish with us

Policies and ethics