Skip to main content

Robotic and Wearable Sensor Technologies for Measurements/Clinical Assessments

  • Chapter
  • First Online:
Neurorehabilitation Technology

Abstract

Neurological disorders such as stroke, multiple sclerosis, traumatic brain injury, cerebral palsy, or spinal cord injury result in partial or complete sensorimotor impairments in the affected limbs. To provide an optimal rehabilitation program, a detailed assessment of the nature and degree of the sensorimotor deficits, as well as their temporal evolution, is crucial. Valid, reliable, and standardized assessments are essential to define the rehabilitation setting, and adapt it over the course of a therapy. Many clinical assessments suffer from limitations such as poor validity, low reliability, and low sensitivity and are often time consuming to administer, which greatly limits their systematic use in daily clinical routine. Rehabilitation robotics and sensor technologies are promising approaches that can provide objective, sensitive, and reliable measurements, which could help overcome the common limitations of conventional clinical assessments. This chapter focuses on the novel possibilities robotic devices and sensor technologies offer in the field of neurorehabilitation. Different strategies to evaluate sensorimotor impairments using robotic platforms, as well as wearable sensor technologies, are presented. We discuss how a link between conventional scales and robotic/sensor-based assessments could be established and how this could result in more objective, clinically accepted assessment scales. Such scales have the potential to directly influence the way therapy is provided and to generate new insights into long-term recovery and transfer of therapy into performance in the home environment.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Duncan PW, Goldstein LB, Matchar D, Divine GW, Feussner J. Measurement of motor recovery after stroke. Outcome assessment and sample size requirements. Stroke. 1992;23(8):1084–9.

    Article  CAS  PubMed  Google Scholar 

  2. Prabhakaran S, Zarahn E, Riley C, Speizer A, Chong JY, Lazar RM, et al. Inter-individual variability in the capacity for motor recovery after ischemic stroke. Neurorehabil Neural Repair. 2008;22(1):64–71.

    Article  PubMed  Google Scholar 

  3. Winters C, van Wegen EE, Daffertshofer A, Kwakkel G. Generalizability of the proportional recovery model for the upper extremity after an ischemic stroke. Neurorehabil Neural Repair. 2015;29(7):614–22.

    Article  PubMed  Google Scholar 

  4. Kollen B, van de Port I, Lindeman E, Twisk J, Kwakkel G. Predicting improvement in gait after stroke: a longitudinal prospective study. Stroke. 2005;36(12):2676–80.

    Article  PubMed  Google Scholar 

  5. Nijland RH, van Wegen EE, der Harmeling-van Wel BC, Kwakkel G. Presence of finger extension and shoulder abduction within 72 hours after stroke predicts functional recovery: early prediction of functional outcome after stroke: the EPOS cohort study. Stroke. 2010;41(4):745–50.

    Article  PubMed  Google Scholar 

  6. Zorner B, Blanckenhorn WU, Dietz V, Curt A. Clinical algorithm for improved prediction of ambulation and patient stratification after incomplete spinal cord injury. J Neurotraum. 2010;27(1):241–52.

    Article  Google Scholar 

  7. Velstra IM, Bolliger M, Tanadini LG, Baumberger M, Abel R, Rietman JS, et al. Prediction and stratification of upper limb function and self-care in acute cervical spinal cord injury with the Graded Redefined Assessment of Strength, Sensibility, and Prehension (GRASSP). Neurorehabil Neural Repair. 2014;28(7):632–42.

    Article  PubMed  Google Scholar 

  8. Finch E, Brooks D, Stratford PW, Mayo NE. Physical rehabilitation outcome measures: a guide to enhanced clinical decision-making. 2nd ed. Ontario: B.C. Decker; 2002.

    Google Scholar 

  9. Kirshner B, Guyatt G. A methodological framework for assessing health indices. J Chronic Dis. 1985;38(1):27–36.

    Article  CAS  PubMed  Google Scholar 

  10. Kwakkel G, Kollen BJ, Krebs HI. Effects of robot-assisted therapy on upper limb recovery after stroke: a systematic review. Neurorehabil Neural Repair. 2008;22(2):111–21.

    Article  PubMed  Google Scholar 

  11. Mehrholz J, Elsner B, Werner C, Kugler J, Pohl M. Electromechanical-assisted training for walking after stroke. Cochrane Database Syst Rev. 2013;(7):CD006185.

    Google Scholar 

  12. Mehrholz J, Hadrich A, Platz T, Kugler J, Pohl M. Electromechanical and robot-assisted arm training for improving generic activities of daily living, arm function, and arm muscle strength after stroke. Cochrane Databse Syst Rev. 2012;(6):CD006876.

    Google Scholar 

  13. Lo AC, Guarino PD, Richards LG, Haselkorn JK, Wittenberg GF, Federman DG, et al. Robot-assisted therapy for long-term upper-limb impairment after stroke. New Engl J Med. 2010;362(19):1772–83.

    Article  CAS  PubMed  Google Scholar 

  14. Maciejasz P, Eschweiler J, Gerlach-Hahn K, Jansen-Troy A, Leonhardt S. A survey on robotic devices for upper limb rehabilitation. J Neuroeng Rehabil. 2014;11:3.

    Article  PubMed  PubMed Central  Google Scholar 

  15. Prange GB, Jannink MJ, Groothuis-Oudshoorn CG, Hermens HJ, Ijzerman MJ. Systematic review of the effect of robot-aided therapy on recovery of the hemiparetic arm after stroke. J Rehabil Res Dev. 2006;43(2):171–84.

    Article  PubMed  Google Scholar 

  16. Reinkensmeyer DJ, Emken JL, Cramer SC. Robotics, motor learning, and neurologic recovery. Annu Rev Biomed Eng. 2004;6:497–525.

    Article  CAS  PubMed  Google Scholar 

  17. Gassert R, Burdet E, Chinzei K. Opportunities and challenges in MR-compatible robotics: reviewing the history, mechatronic components, and future directions of this technology. IEEE Eng Med Biol Mag. 2008;27(3):15–22.

    Article  PubMed  Google Scholar 

  18. World Health Organization. International classification of functioning, disability and health (ICF). Geneva: World Health Organization; 2001.

    Google Scholar 

  19. Bohannon RW, Smith MB. Interrater reliability of a modified Ashworth scale of muscle spasticity. Phys Ther. 1987;67(2):206–7.

    CAS  PubMed  Google Scholar 

  20. Stolze H, Klebe S, Baecker C, Zechlin C, Friege L, Pohle S, et al. Prevalence of gait disorders in hospitalized neurological patients. Mov Disord. 2005;20(1):89–94.

    Article  PubMed  Google Scholar 

  21. Hsu AL, Tang PF, Jan MH. Analysis of impairments influencing gait velocity and asymmetry of hemiplegic patients after mild to moderate stroke. Arch Phys Med Rehabil. 2003;84(8):1185–93.

    Article  PubMed  Google Scholar 

  22. Olney S, Richards C. Hemiparetic gait following stroke. Part I: characteristics. Gait Posture. 1996;4(2):136–48.

    Article  Google Scholar 

  23. van der Salm A, Nene AV, Maxwell DJ, Veltink PH, Hermens HJ, IJzerman MJ. Gait impairments in a group of patients with incomplete spinal cord injury and their relevance regarding therapeutic approaches using functional electrical stimulation. Artif Organs. 2005;29(1):8–14.

    Article  PubMed  Google Scholar 

  24. Field-Fote EC, Fluet GG, Schafer SD, Schneider EM, Smith R, Downey PA, et al. The Spinal Cord Injury Functional Ambulation Inventory (SCI-FAI). J Rehabil Med. 2001;33(4):177–81.

    Article  CAS  PubMed  Google Scholar 

  25. Dietz V, Sinkjaer T. Spastic movement disorder: impaired reflex function and altered muscle mechanics. Lancet Neurol. 2007;6(8):725–33.

    Article  PubMed  Google Scholar 

  26. Dietz V, Fouad K. Restoration of sensorimotor functions after spinal cord injury. Brain. 2014;137:654–67.

    Article  PubMed  Google Scholar 

  27. Stegemoller EL, Wilson JP, Hazamy A, Shelley MC, Okun MS, Altmann LJ, et al. Associations between cognitive and gait performance during single- and dual-task walking in people with Parkinson disease. Phys Ther. 2014;94(6):757–66.

    Article  PubMed  PubMed Central  Google Scholar 

  28. Horak FB, Mancini M. Objective biomarkers of balance and gait for Parkinson’s disease using body-worn sensors. Mov Disord. 2013;28(11):1544–51.

    Article  PubMed  PubMed Central  Google Scholar 

  29. Jackson AB, Carnel CT, Ditunno JF, Read MS, Boninger ML, Schmeler MR, et al. Outcome measures for gait and ambulation in the spinal cord injury population. J Spinal Cord Med. 2008;31(5):487–99.

    PubMed  PubMed Central  Google Scholar 

  30. Cruz EG, Waldinger HC, Kamper DG. Kinetic and kinematic workspaces of the index finger following stroke. Brain. 2005;128:1112–21.

    Article  CAS  PubMed  Google Scholar 

  31. Dovat L, Lambercy O, Johnson V, Salman B, Wong S, Gassert R, et al. A cable driven robotic system to train finger function after stroke. Proceedings of the IEEE International Conference on Rehabilitation Robotics (ICORR), Noordwijk. 2007:222–7.

    Google Scholar 

  32. Kamper DG, Fischer HC, Cruz EG, Rymer WZ. Weakness is the primary contributor to finger impairment in chronic stroke. Arch Phys Med Rehabil. 2006;87(9):1262–9.

    Article  PubMed  Google Scholar 

  33. Lang CE, Schieber MH. Human finger independence: limitations due to passive mechanical coupling versus active neuromuscular control. J Neurophysiol. 2004;92(5):2802–10.

    Article  PubMed  Google Scholar 

  34. Raghavan P, Petra E, Krakauer JW, Gordon AM. Patterns of impairment in digit independence after subcortical stroke. J Neurophysiol. 2006;95(1):369–78.

    Article  PubMed  Google Scholar 

  35. Schieber MH, Lang CE, Reilly KT, McNulty P, Sirigu A. Selective activation of human finger muscles after stroke or amputation. Adv Exp Med Biol. 2009;629:559–75.

    Article  PubMed  PubMed Central  Google Scholar 

  36. Doyle S, Bennett S, Fasoli SE, McKenna KT. Interventions for sensory impairment in the upper limb after stroke. Cochrane Database Syst Rev. 2010;(6):CD006331.

    Google Scholar 

  37. Alt Murphy M, Resteghini C, Feys P, Lamers I. An overview of systematic reviews on upper extremity outcome measures after stroke. BMC Neurol. 2015;15:29.

    Article  PubMed  PubMed Central  Google Scholar 

  38. Gale CR, Allerhand M, Sayer AA, Cooper C, Deary IJ. The dynamic relationship between cognitive function and walking speed: the English Longitudinal Study of Ageing. Age. 2014;36(4):9682.

    Article  PubMed  PubMed Central  Google Scholar 

  39. Welmer AK, Rizzuto D, Qiu C, Caracciolo B, Laukka EJ. Walking speed, processing speed, and dementia: a population-based longitudinal study. J Gerontol. 2014;69(12):1503–10.

    Article  Google Scholar 

  40. Mathiowetz V, Weber K, Kashman N, Volland G. Adult norms for the nine hole peg test of finger dexterity. Occup Ther J Res. 1985;5:24–38.

    Google Scholar 

  41. Catz A, Itzkovich M, Agranov E, Ring H, Tamir A. SCIM – spinal cord independence measure: a new disability scale for patients with spinal cord lesions. Spinal Cord. 1997;35(12):850–6.

    Article  CAS  PubMed  Google Scholar 

  42. Fugl-Meyer AR, Jaasko L, Leyman I, Olsson S, Steglind S. The post-stroke hemiplegic patient: a method for evaluation of physical performance. Scand J Rehabil Med. 1975;7(1):13–31.

    CAS  PubMed  Google Scholar 

  43. Gladstone DJ, Danells CJ, Black SE. The Fugl-Meyer assessment of motor recovery after stroke: a critical review of its measurement properties. Neurorehabil Neural Repair. 2002;16(3):232–40.

    Article  PubMed  Google Scholar 

  44. Pandyan AD, Gregoric M, Barnes MP, Wood D, Van Wijck F, Burridge J, et al. Spasticity: clinical perceptions, neurological realities and meaningful measurement. Disabil Rehabil. 2005;27(1–2):2–6.

    Article  CAS  PubMed  Google Scholar 

  45. Fleuren JFM, Voerman GE, Erren-Wolters CV, Snoek GJ, Rietman JS, Hermens HJ, et al. Stop using the Ashworth Scale for the assessment of spasticity. J Neurol Neurosurg Psychiatry. 2010;81(1):46–52.

    Article  CAS  PubMed  Google Scholar 

  46. Gilman S. Joint position sense and vibration sense: anatomical organisation and assessment. J Neurol Neurosurg Psychiatry. 2002;73(5):473–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Goble DJ. Proprioceptive acuity assessment via joint position matching: from basic science to general practice. Phys Ther. 2010;90(8):1176–84.

    Article  PubMed  Google Scholar 

  48. Rossier P, Wade DT. Validity and reliability comparison of 4 mobility measures in patients presenting with neurologic impairment. Arch Phys Med Rehabil. 2001;82(1):9–13.

    Article  CAS  PubMed  Google Scholar 

  49. Lyle RC. A performance test for assessment of upper limb function in physical rehabilitation treatment and research. Int J Rehabil Res. 1981;4(4):483–92.

    Article  CAS  PubMed  Google Scholar 

  50. Kitago T, Liang J, Huang VS, Hayes S, Simon P, Tenteromano L, et al. Improvement after constraint-induced movement therapy: recovery of normal motor control or task-specific compensation? Neurorehabil Neural Repair. 2013;27(2):99–109.

    Article  PubMed  Google Scholar 

  51. Blackburn M, van Vliet P, Mockett SP. Reliability of measurements obtained with the modified Ashworth scale in the lower extremities of people with stroke. Phys Ther. 2002;82(1):25–34.

    PubMed  Google Scholar 

  52. Colombo G, Joerg M, Schreier R, Dietz V. Treadmill training of paraplegic patients using a robotic orthosis. J Rehabil Res Dev. 2000;37(6):693–700.

    CAS  PubMed  Google Scholar 

  53. Veneman JF, Kruidhof R, Hekman EE, Ekkelenkamp R, Van Asseldonk EH, van der Kooij H. Design and evaluation of the LOPES exoskeleton robot for interactive gait rehabilitation. IEEE Trans Neural Syst Rehabil Eng. 2007;15(3):379–86.

    Article  PubMed  Google Scholar 

  54. Hogan N, Krebs HI, Sharon A, Charnnarong J, inventors. Interactive robotic therapist. US Patent 5466213, 1995.

    Google Scholar 

  55. Lum PS, Burgar CG, Shor PC, Majmundar M, Van der Loos M. Robot-assisted movement training compared with conventional therapy techniques for the rehabilitation of upper-limb motor function after stroke. Arch Phys Med Rehabil. 2002;83(7):952–9.

    Article  PubMed  Google Scholar 

  56. Klamroth-Marganska V, Blanco J, Campen K, Curt A, Dietz V, Ettlin T, et al. Three-dimensional, task-specific robot therapy of the arm after stroke: a multicentre, parallel-group randomised trial. Lancet Neurol. 2014;13(2):159–66.

    Article  PubMed  Google Scholar 

  57. Bouzit M, Burdea G, Popescu G, Boian R. The Rutgers Master II: new design force-feedback glove. IEEE-ASME Trans Mech. 2002;7(2):256–63.

    Article  Google Scholar 

  58. Hesse S, Werner C, Pohl M, Rueckriem S, Mehrholz J, Lingnau ML. Computerized arm training improves the motor control of the severely affected arm after stroke; a single-blinded randomized trial in two centers. Stroke. 2005;36(9):1960–6.

    Article  CAS  PubMed  Google Scholar 

  59. Takahashi CD, Der-Yeghiaian L, Le V, Motiwala RR, Cramer SC. Robot-based hand motor therapy after stroke. Brain. 2008;131:425–37.

    Article  PubMed  Google Scholar 

  60. Lambercy O, Dovat L, Gassert R, Burdet E, Teo CL, Milner T. A haptic knob for rehabilitation of hand function. IEEE Trans Neural Syst Rehabil Eng. 2007;15(3):356–66.

    Article  PubMed  Google Scholar 

  61. Dovat L, Lambercy O, Gassert R, Maeder T, Milner T, Leong TC, et al. HandCARE: a cable-actuated rehabilitation system to train hand function after stroke. IEEE Trans Neural Syst Rehabil Eng. 2008;16(6):582–91.

    Article  PubMed  Google Scholar 

  62. Metzger JC, Lambercy O, Califfi A, Conti FM, Gassert R. Neurocognitive robot-assisted therapy of hand function. IEEE Trans Haptics. 2014;7(2):140–9.

    Article  PubMed  Google Scholar 

  63. Lum PS, Godfrey SB, Brokaw EB, Holley RJ, Nichols D. Robotic approaches for rehabilitation of hand function after stroke. Am J Phys Med Rehabil. 2012;91(11):242–54.

    Article  Google Scholar 

  64. Balasubramanian S, Klein J, Burdet E. Robot-assisted rehabilitation of hand function. Curr Opin Neurol. 2010;23(6):661–70.

    Article  PubMed  Google Scholar 

  65. Marchal-Crespo L, Reinkensmeyer DJ. Review of control strategies for robotic movement training after neurologic injury. J Neuroeng Rehabil. 2009;6:20.

    Article  PubMed  PubMed Central  Google Scholar 

  66. Dovat L, Lambercy O, Salman B, Johnson V, Gassert R, Burdet E, et al. Post-stroke training of a pick and place activity in a virtual environment. Proceedings of international conference virtual rehabilitation. IEEE, Vancouver. 2008:28–34.

    Google Scholar 

  67. Feys P, Alders G, Gijbels D, De Boeck J, De Weyer T, Coninx K, et al. Arm training in multiple sclerosis using PHANTOM: clinical relevance of robotic outcome measures. Proceedings of the IEEE International Conference on Rehabilitation Robotics (ICORR), Kyoto. 2009:671–6.

    Google Scholar 

  68. Hesse S, Waldner A, Tomelleri C. Innovative gait robot for the repetitive practice of floor walking and stair climbing up and down in stroke patients. J Neuroeng Rehabil. 2010;7:30.

    Article  PubMed  PubMed Central  Google Scholar 

  69. Emken JL, Harkema SJ, Beres-Jones JA, Ferreira CK, Reinkensmeyer DJ. Feasibility of manual teach-and-replay and continuous impedance shaping for robotic locomotor training following spinal cord injury. IEEE Trans Bio Med Eng. 2008;55(1):322–34.

    Article  Google Scholar 

  70. Maggioni S, Lunenburger L, Riener R, Melendez-Calderon A. Robot-aided assessment of walking function based on an adaptive algorithm. Proceedings of the IEEE International Conference on Rehabilitation Robotics (ICORR), Singapore. 2015:804–9.

    Google Scholar 

  71. Lunenburger L, Colombo G, Riener R, Dietz V. Clinical assessments performed during robotic rehabilitation by the gait training robot Lokomat. Proceedings of the IEEE International Conference on Rehabilitation Robotics (ICORR), Chicago. 2005:345–8.

    Google Scholar 

  72. Bolliger M, Banz R, Dietz V, Lunenburger L. Standardized voluntary force measurement in a lower extremity rehabilitation robot. J Neuroeng Rehabil. 2008;5:23.

    Article  PubMed  PubMed Central  Google Scholar 

  73. Galen SS, Clarke CJ, McLean AN, Allan DB, Conway BA. Isometric hip and knee torque measurements as an outcome measure in robot-assisted gait training. NeuroRehabilitation. 2014;34(2):287–95.

    PubMed  Google Scholar 

  74. Waldman G, Yang CY, Ren Y, Liu L, Guo X, Harvey RL, et al. Effects of robot-guided passive stretching and active movement training of ankle and mobility impairments in stroke. NeuroRehabilitation. 2013;32(3):625–34.

    PubMed  Google Scholar 

  75. Zhang LQ, Chung SG, Bai Z, Xu D, van Rey EM, Rogers MW, et al. Intelligent stretching of ankle joints with contracture/spasticity. IEEE Trans Neural Syst Rehabil Eng. 2002;10(3):149–57.

    Article  PubMed  Google Scholar 

  76. Keller U, Scholch S, Albisser U, Rudhe C, Curt A, Riener R, et al. Robot-assisted arm assessments in spinal cord injured patients: a consideration of concept study. PLoS One. 2015;10(5):e0126948.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  77. Ellis MD, Sukal-Moulton T, Dewald JP. Progressive shoulder abduction loading is a crucial element of arm rehabilitation in chronic stroke. Neurorehabil Neural Repair. 2009;23(8):862–9.

    Article  PubMed  PubMed Central  Google Scholar 

  78. Carey LM, Oke LE, Matyas TA. Impaired limb position sense after stroke: a quantitative test for clinical use. Arch Phys Med Rehabil. 1996;77(12):1271–8.

    Article  CAS  PubMed  Google Scholar 

  79. Han J, Waddington G, Adams R, Anson J, Liu Y. Assessing proprioception: a critical review of methods. J Sport Health Sci. 2015. doi:10.1016/j.jshs.2014.10.004.

    Google Scholar 

  80. Domingo A, Lam T. Reliability and validity of using the Lokomat to assess lower limb joint position sense in people with incomplete spinal cord injury. J Neuroeng Rehabil. 2014;11:167.

    Article  PubMed  PubMed Central  Google Scholar 

  81. Semrau JA, Herter TM, Scott SH, Dukelow SP. Robotic identification of kinesthetic deficits after stroke. Stroke. 2013;44(12):3414–21.

    Article  PubMed  Google Scholar 

  82. Dukelow SP, Herter TM, Moore KD, Demers MJ, Glasgow JI, Bagg SD, et al. Quantitative assessment of limb position sense following stroke. Neurorehabil Neural Repair. 2010;24(2):178–87.

    Article  PubMed  Google Scholar 

  83. Dukelow SP, Herter TM, Bagg SD, Scott SH. The independence of deficits in position sense and visually guided reaching following stroke. J Neuroeng Rehabil. 2012;9:72.

    Article  PubMed  PubMed Central  Google Scholar 

  84. Simo L, Botzer L, Ghez C, Scheidt RA. A robotic test of proprioception within the hemiparetic arm post-stroke. J Neuroeng Rehabil. 2014;11:77.

    Article  PubMed  PubMed Central  Google Scholar 

  85. Cappello L, Elangovan N, Contu S, Khosravani S, Konczak J, Masia L. Robot-aided assessment of wrist proprioception. Front Hum Neurosci. 2015;9:198.

    Article  PubMed  PubMed Central  Google Scholar 

  86. Rinderknecht M, Popp W, Lambercy O, Gassert R. Experimental validation of a rapid, adaptive robotic assessment of the MCP joint angle difference threshold. Haptics: neuroscience, devices, modeling, and applications. Berlin: Springer; 2014. p. 3–10.

    Google Scholar 

  87. van Asseldonk EH, Veneman JF, Ekkelenkamp R, Buurke JH, van der Helm FC, van der Kooij H. The effects on kinematics and muscle activity of walking in a robotic gait trainer during zero-force control. IEEE Trans Neural Syst Rehabil Eng. 2008;16(4):360–70.

    Article  PubMed  Google Scholar 

  88. Banz R, Bolliger M, Colombo G, Dietz V, Lunenburger L. Computerized visual feedback: an adjunct to robotic-assisted gait training. Phys Ther. 2008;88(10):1135–45.

    Article  PubMed  Google Scholar 

  89. Lunenburger L, Colombo G, Riener R. Biofeedback for robotic gait rehabilitation. J Neuroeng Rehabil. 2007;4:1.

    Article  PubMed  PubMed Central  Google Scholar 

  90. Lunenburger L, Colombo G, Riener R, Dietz V. Biofeedback in gait training with the robotic orthosis Lokomat. Proceedings of IEEE engineering in medicine and biology conference, San Francisco. 2004;7:4888–91.

    Google Scholar 

  91. Wood DE, Burridge JH, van Wijck FM, McFadden C, Hitchcock RA, Pandyan AD, et al. Biomechanical approaches applied to the lower and upper limb for the measurement of spasticity: a systematic review of the literature. Disabil Rehabil. 2005;27(1–2):19–32.

    Article  CAS  PubMed  Google Scholar 

  92. Kakebeeke TH, Lechner H, Baumberger M, Denoth J, Michel D, Knecht H. The importance of posture on the isokinetic assessment of spasticity. Spinal Cord. 2002;40(5):236–43.

    Article  CAS  PubMed  Google Scholar 

  93. Johnson GR. Outcome measures of spasticity. Eur J Neurol. 2002;9:10–6.

    Article  PubMed  Google Scholar 

  94. Mirbagheri MM, Barbeau H, Kearney RE. Intrinsic and reflex contributions to human ankle stiffness: variation with activation level and position. Exp Brain Res. 2000;135(4):423–36.

    Article  CAS  PubMed  Google Scholar 

  95. Mirbagheri MM, Barbeau H, Ladouceur M, Kearney RE. Intrinsic and reflex stiffness in normal and spastic, spinal cord injured subjects. Exp Brain Res. 2001;141(4):446–59.

    Article  CAS  PubMed  Google Scholar 

  96. Nordin N, Xie SQ, Wunsche B. Assessment of movement quality in robot-assisted upper limb rehabilitation after stroke: a review. J Neuroeng Rehabil. 2014;11:137.

    Article  PubMed  PubMed Central  Google Scholar 

  97. Flash T, Hogan N. The coordination of arm movements; an experimentally confirmed mathematical model. J Neurosci. 1985;5(7):1688–703.

    CAS  PubMed  Google Scholar 

  98. Rohrer B, Fasoli S, Krebs HI, Hughes R, Volpe B, Frontera WR, et al. Movement smoothness changes during stroke recovery. J Neurosci. 2002;22(18):8297–304.

    CAS  PubMed  Google Scholar 

  99. Burdet E, Milner TE. Quantization of human motions and learning of accurate movements. Biol Cybern. 1998;78(4):307–18.

    Article  CAS  PubMed  Google Scholar 

  100. Kahn LE, Zygman ML, Rymer WZ, Reinkensmeyer DJ. Effect of robot-assisted and unassisted exercise on functional reaching in chronic hemiparesis. Proceedings of IEEE engineering in medicine and biology conference, Istanbul. 2001;23:1344–7.

    Google Scholar 

  101. Balasubramanian S, Melendez-Calderon A, Burdet E. A robust and sensitive metric for quantifying movement smoothness. IEEE Trans Bio Med Eng. 2012;59(8):2126–36.

    Article  CAS  Google Scholar 

  102. Hogan N, Sternad D. Sensitivity of smoothness measures to movement duration, amplitude, and arrests. J Mot Behav. 2009;41(6):529–34.

    Article  PubMed  PubMed Central  Google Scholar 

  103. Rohrer B, Fasoli S, Krebs HI, Volpe B, Frontera WR, Stein J, et al. Submovements grow larger, fewer, and more blended during stroke recovery. Motor Control. 2004;8(4):472–83.

    PubMed  Google Scholar 

  104. Kahn LE, Zygman ML, Rymer WZ, Reinkensmeyer DJ. Robot-assisted reaching exercise promotes arm movement recovery in chronic hemiparetic stroke: a randomized controlled pilot study. J Neuroeng Rehabil. 2006;3:12.

    Article  PubMed  PubMed Central  Google Scholar 

  105. Lambercy O, Dovat L, Yun H, Wee SK, Kuah CW, Chua KS, et al. Effects of a robot-assisted training of grasp and pronation/supination in chronic stroke: a pilot study. J Neuroeng Rehabil. 2011;8:63.

    PubMed  PubMed Central  Google Scholar 

  106. Yoo DH, Kim SY. Effects of upper limb robot-assisted therapy in the rehabilitation of stroke patients. J Phys Ther Sci. 2015;27(3):677–9.

    Article  PubMed  PubMed Central  Google Scholar 

  107. Levin MF. Interjoint coordination during pointing movements is disrupted in spastic hemiparesis. Brain. 1996;119:281–93.

    Article  PubMed  Google Scholar 

  108. Guidali M, Schmiedeskamp M, Klamroth V, Riener R. Assessment and training of synergies with an arm rehabilitation robot. Proceedings of the IEEE International Conference on Rehabilitation Robotics (ICORR), Kyoto. 2009:772–6.

    Google Scholar 

  109. Dewald JPA, Beer RF. Abnormal joint torque patterns in the paretic upper limb of subjects with hemiparesis. Muscle Nerve. 2001;24(2):273–83.

    Article  CAS  PubMed  Google Scholar 

  110. Miller LC, Ruiz-Torres R, Stienen AHA, Dewald JPA. A wrist and finger force sensor module for use during movements of the upper limb in chronic hemiparetic stroke. IEEE Trans Bio Med Eng. 2009;56(9):2312–7.

    Article  Google Scholar 

  111. Kazemi H, Kearney R, Milner T. Characterizing coordination of grasp and twist in hand function of healthy and post-stroke subjects. Proceedings of IEEE International Conference Rehabil Robot (ICORR), Seattle. 2013;2013:1–6.

    Google Scholar 

  112. Bardorfer A, Munih M, Zupan A, Primozic A. Upper limb motion analysis using haptic interface. IEEE-ASME Trans Mech. 2001;6(3):253–60.

    Article  Google Scholar 

  113. Mathiowetz V, Volland G, Kashman N, Weber K. Adult norms for the Box and Block Test of manual dexterity. Am J Occup Ther. 1985;39(6):386–91.

    Article  CAS  PubMed  Google Scholar 

  114. Emery C, Samur E, Lambercy O, Bleuler H, Gassert R. Haptic/VR assessment tool for fine motor control. Haptics: generating and perceiving tangible sensations, Proceedings of EuroHaptics 2010. Lecture Notes in Computer Science. Vol. 6192, Springer, Berlin Heidelberg. 2010;6192:186–93.

    Google Scholar 

  115. Fluet M-C, Lambercy O, Gassert R. Upper limb assessment using a Virtual Peg Insertion Test. Proceedings of the IEEE International Conference on Rehabilitation Robotics (ICORR), Zurich. 2011:1–6.

    Google Scholar 

  116. Lambercy O, Fluet M-C, Lamers I, Feys P, Gassert R. Assessment of upper limb motor function in patients with multiple sclerosis using the Virtual Peg Insertion Test: a pilot study. Proceedings of the IEEE International Conference on Rehabilitation Robotics (ICORR), Seattle. 2013:1–6.

    Google Scholar 

  117. Gagnon C, Lavoie C, Lessard I, Mathieu J, Brais B, Bouchard J-P, et al. The Virtual Peg Insertion Test as an assessment of upper limb coordination in ARSACS patients: a pilot study. J Neurol Sci. 2014;15(347):341–4.

    Article  Google Scholar 

  118. Amirabdollahian F, Johnson G. Analysis of the results from use of haptic peg-in-hole task for assessment in neurorehabilitation. Appl Bionics Biomech. 2011;8(1):1–11.

    Article  Google Scholar 

  119. Xydas EG, Louca LS. Upper limb assessment of people with multiple sclerosis with the use of a haptic nine-hole peg-board test. Proceedings of ASME biennial conference on engineering systems design and analysis. ASME, Haifa. 2008:159–66.

    Google Scholar 

  120. Colombo R, Pisano F, Micera S, Mazzone A, Delconte C, Carrozza MC, et al. Robotic techniques for upper limb evaluation and rehabilitation of stroke patients. IEEE Trans Neural Syst Rehabil Eng. 2005;13(3):311–24.

    Article  PubMed  Google Scholar 

  121. Colombo R, Pisano F, Micera S, Mazzone A, Delconte C, Carrozza MC, et al. Assessing mechanisms of recovery during robot-aided neurorehabilitation of the upper limb. Neurorehabil Neural Repair. 2008;22(1):50–63.

    Article  CAS  PubMed  Google Scholar 

  122. Celik O, O’Malley MK, Boake C, Levin HS, Yozbatiran N, Reistetter TA. Normalized movement quality measures for therapeutic robots strongly correlate with clinical motor impairment measures. IEEE Trans Neural Syst Rehabil Eng. 2010;18(4):433–44.

    Article  PubMed  Google Scholar 

  123. Bosecker C, Dipietro L, Volpe V, Krebs HI. Kinematic robot-based evaluation scales and clinical counterparts to measure upper limb motor performance in patients with chronic stroke. Neurorehabil Neural Repair. 2010;24(1):62–9.

    Article  PubMed  Google Scholar 

  124. Krebs HI, Krams M, Agrafiotis DK, DiBernardo A, Chavez JC, Littman GS, et al. Robotic measurement of arm movements after stroke establishes biomarkers of motor recovery. Stroke. 2014;45(1):200–4.

    Article  PubMed  Google Scholar 

  125. Zariffa J, Kapadia N, Kramer JLK, Taylor P, Alizadeh-Meghrazi M, Zivanovic V, et al. Relationship between clinical assessments of function and measurements from an upper-limb robotic rehabilitation device in cervical spinal cord injury. IEEE Trans Neural Syst Rehabil Eng. 2012;20(3):341–50.

    Article  PubMed  Google Scholar 

  126. Lambercy O, Dovat L, Yun H, Wee SK, Kuah C, Chua K, et al. Robotic assessment of hand function with the HapticKnob. Proceedings of International Convention for Rehabilitation Engineering & Assistive Technology (i-CREATe), Singapore. 2010:1–4.

    Google Scholar 

  127. Bilney B, Morris M, Webster K. Concurrent related validity of the GAITRite walkway system for quantification of the spatial and temporal parameters of gait. Gait Posture. 2003;17(1):68–74.

    Article  PubMed  Google Scholar 

  128. McDonough AL, Batavia M, Chen FC, Kwon S, Ziai J. The validity and reliability of the GAITRite system’s measurements: a preliminary evaluation. Arch Phys Med Rehabil. 2001;82(3):419–25.

    Article  CAS  PubMed  Google Scholar 

  129. Menz HB, Latt MD, Tiedemann A, Mun San Kwan M, Lord SR. Reliability of the GAITRite walkway system for the quantification of temporo-spatial parameters of gait in young and older people. Gait Posture. 2004;20(1):20–5.

    Article  PubMed  Google Scholar 

  130. Clark RA, Pua YH, Fortin K, Ritchie C, Webster KE, Denehy L, et al. Validity of the Microsoft Kinect for assessment of postural control. Gait Posture. 2012;36(3):372–7.

    Article  PubMed  Google Scholar 

  131. Lange B, Chang CY, Suma E, Newman B, Rizzo AS, Bolas M. Development and evaluation of low cost game-based balance rehabilitation tool using the Microsoft Kinect sensor. Proceedings of IEEE engineering in medicine and biology conference, Boston. 2011:1831–4.

    Google Scholar 

  132. Lee MM, Song CH, Lee KJ, Jung SW, Shin DC, Shin SH. Concurrent validity and test-retest reliability of the OPTOGait photoelectric cell system for the assessment of spatiotemporal parameters of the gait of young adults. J Phys Ther Sci. 2014;26(1):81–5.

    Article  PubMed  PubMed Central  Google Scholar 

  133. Clark RA, Vernon S, Mentiplay BF, Miller KJ, McGinley JL, Pua YH, et al. Instrumenting gait assessment using the Kinect in people living with stroke: reliability and association with balance tests. J Neuroeng Rehabil. 2015;12:15.

    Article  PubMed  PubMed Central  Google Scholar 

  134. Wikstrom J, Georgoulas G, Moutsopoulos T, Seferiadis A. Intelligent data analysis of instrumented gait data in stroke patients-a systematic review. Comput Biol Med. 2014;51:61–72.

    Article  PubMed  Google Scholar 

  135. Han JJ, Kurillo G, Abresch RT, De Bie E, Nicorici A, Bajcsy R. Upper extremity 3-dimensional reachable workspace analysis in dystrophinopathy using Kinect. Muscle Nerve. 2015;52(3):344–55.

    Article  PubMed  Google Scholar 

  136. Olesh EV, Yakovenko S, Gritsenko V. Automated assessment of upper extremity movement impairment due to stroke. PLoS One. 2014;9(8):e104487.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  137. Chang YJ, Chen SF, Huang JD. A Kinect-based system for physical rehabilitation: a pilot study for young adults with motor disabilities. Res Dev Disabil. 2011;32(6):2566–70.

    Article  PubMed  Google Scholar 

  138. Raghavan P, Santello M, Gordon AM, Krakauer JW. Compensatory motor control after stroke: an alternative joint strategy for object-dependent shaping of hand posture. J Neurophysiol. 2010;103(6):3034–43.

    Article  PubMed  PubMed Central  Google Scholar 

  139. Oess NP, Wanek J, Curt A. Design and evaluation of a low-cost instrumented glove for hand function assessment. J Neuroeng Rehabil. 2012;9:2.

    Article  PubMed  PubMed Central  Google Scholar 

  140. Gentner R, Classen J. Development and evaluation of a low-cost sensor glove for assessment of human finger movements in neurophysiological settings. J Neurosci Methods. 2009;178(1):138–47.

    Article  PubMed  Google Scholar 

  141. Hermsdorfer J, Hagl E, Nowak DA, Marquardt C. Grip force control during object manipulation in cerebral stroke. Clin Neurophysiol. 2003;114(5):915–29.

    Article  CAS  PubMed  Google Scholar 

  142. Nowak DA, Hermsdorfer J. Grip force behavior during object manipulation in neurological disorders: toward an objective evaluation of manual performance deficits. Mov Disord. 2005;20(1):11–25.

    Article  PubMed  Google Scholar 

  143. Nowak DA, Hermsdorfer J. Objective evaluation of manual performance deficits in neurological movement disorders. Brain Res Rev. 2006;51(1):108–24.

    Article  PubMed  Google Scholar 

  144. Nowak DA, Hermsdorfer J, Marquardt C, Topka H. Moving objects with clumsy fingers: how predictive is grip force control in patients with impaired manual sensibility? Clin Neurophysiol. 2003;114(3):472–87.

    Article  PubMed  Google Scholar 

  145. Nowak DA, Hermsdorfer J, Topka H. Deficits of predictive grip force control during object manipulation in acute stroke. J Neurol. 2003;250(7):850–60.

    Article  PubMed  Google Scholar 

  146. Bonato P. Advances in wearable technology and applications in physical medicine and rehabilitation. J Neuroeng Rehabil. 2005;2(1):2.

    Article  PubMed  PubMed Central  Google Scholar 

  147. Chen KY, Bassett Jr DR. The technology of accelerometry-based activity monitors: current and future. Med Sci Sports Exerc. 2005;37(1):S490–500.

    Article  PubMed  Google Scholar 

  148. John D, Freedson P. ActiGraph and actical physical activity monitors: a peek under the hood. Med Sci Sports Exerc. 2012;44(1):86–9.

    Article  Google Scholar 

  149. Bassett DR. Device-based monitoring in physical activity and public health research. Physiol Meas. 2012;33(11):1769–83.

    Article  PubMed  Google Scholar 

  150. Kinnunen H, Tanskanen M, Kyrolainen H, Westerterp KR. Wrist-worn accelerometers in assessment of energy expenditure during intensive training. Physiol Meas. 2012;33(11):1841–54.

    Article  CAS  PubMed  Google Scholar 

  151. Koehler K, Braun H, de Marees M, Fusch G, Fusch C, Schaenzer W. Assessing energy expenditure in male endurance athletes: validity of the sensewear armband. Med Sci Sports Exerc. 2011;43(7):1328–33.

    Article  PubMed  Google Scholar 

  152. Pollak CP, Tryon WW, Nagaraja H, Dzwonczyk R. How accurately does wrist actigraphy identify the states of sleep and wakefulness? Sleep. 2001;24(8):957–65.

    CAS  PubMed  Google Scholar 

  153. So K, Buckley P, Adamson TM, Horne RS. Actigraphy correctly predicts sleep behavior in infants who are younger than six months, when compared with polysomnography. Pediatr Res. 2005;58(4):761–5.

    Article  PubMed  Google Scholar 

  154. Dijkstra B, Kamsma YP, Zijlstra W. Detection of gait and postures using a miniaturized triaxial accelerometer-based system: accuracy in patients with mild to moderate Parkinson’s disease. Arch Phys Med Rehabil. 2010;91(8):1272–7.

    Article  PubMed  Google Scholar 

  155. Godfrey A, Conway R, Meagher D, OL G. Direct measurement of human movement by accelerometry. Med Eng Phys. 2008;30(10):1364–86.

    Article  CAS  PubMed  Google Scholar 

  156. Zijlstra W, Hof AL. Assessment of spatiotemporal gait parameters from trunk accelerations during human walking. Gait Posture. 2003;18(2):1–10.

    Article  PubMed  Google Scholar 

  157. Dijkstra B, Zijlstra W, Scherder E, Kamsma Y. Detection of walking periods and number of steps in older adults and patients with Parkinson’s disease: accuracy of a pedometer and an accelerometry-based method. Age Ageing. 2008;37(4):436–41.

    Article  PubMed  Google Scholar 

  158. Paraschiv-Ionescu A, Perruchoud C, Buchser E, Aminian K. Barcoding human physical activity to assess chronic pain conditions. PLoS One. 2012;7(2):e32239.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  159. Michielsen ME, Selles RW, Stam HJ, Ribbers GM, Bussmann JB. Quantifying nonuse in chronic stroke patients: a study into paretic, nonparetic, and bimanual upper-limb use in daily life. Arch Phys Med Rehabil. 2012;93(11):1975–81.

    Article  PubMed  Google Scholar 

  160. van der Pas SC, Verbunt JA, Breukelaar DE, van Woerden R, Seelen HA. Assessment of arm activity using triaxial accelerometry in patients with a stroke. Arch Phys Med Rehabil. 2011;92(9):1437–42.

    Article  PubMed  Google Scholar 

  161. Thrane G, Emaus N, Askim T, Anke A. Arm use in patients with subacute stroke monitored by accelerometry: association with motor impairment and influence on self-dependence. J Rehabil Med. 2011;43(4):299–304.

    Article  PubMed  Google Scholar 

  162. Noorkoiv M, Rodgers H, Price CI. Accelerometer measurement of upper extremity movement after stroke: a systematic review of clinical studies. J Neuroeng Rehabil. 2014;11:144.

    Article  PubMed  PubMed Central  Google Scholar 

  163. Uswatte G, Giuliani C, Winstein C, Zeringue A, Hobbs L, Wolf SL. Validity of accelerometry for monitoring real-world arm activity in patients with subacute stroke: evidence from the extremity constraint-induced therapy evaluation trial. Arch Phys Med Rehabil. 2006;87(10):1340–5.

    Article  PubMed  Google Scholar 

  164. Uswatte G, Foo WL, Olmstead H, Lopez K, Holand A, Simms LB. Ambulatory monitoring of arm movement using accelerometry: an objective measure of upper-extremity rehabilitation in persons with chronic stroke. Arch Phys Med Rehabil. 2005;86(7):1498–501.

    Article  PubMed  Google Scholar 

  165. Markopoulos P, Timmermans AA, Beursgens L, van Donselaar R, Seelen HA. Us’em: the user-centered design of a device for motivating stroke patients to use their impaired arm-hand in daily life activities. Proceedings of IEEE engineering in medicine and biology conference, Boston. 2011:5182–7.

    Google Scholar 

  166. Gebruers N, Vanroy C, Truijen S, Engelborghs S, De Deyn PP. Monitoring of physical activity after stroke: a systematic review of accelerometry-based measures. Arch Phys Med Rehabil. 2010;91(2):288–97.

    Article  PubMed  Google Scholar 

  167. Jasiewicz JM, Allum JH, Middleton JW, Barriskill A, Condie P, Purcell B, et al. Gait event detection using linear accelerometers or angular velocity transducers in able-bodied and spinal-cord injured individuals. Gait Posture. 2006;24(4):502–9.

    Article  PubMed  Google Scholar 

  168. Rueterbories J, Spaich EG, Larsen B, Andersen OK. Methods for gait event detection and analysis in ambulatory systems. Med Eng Phys. 2010;32(6):545–52.

    Article  PubMed  Google Scholar 

  169. Moore ST, Dilda V, Hakim B, Macdougall HG. Validation of 24-hour ambulatory gait assessment in Parkinson’s disease with simultaneous video observation. Biomed Eng Online. 2011;10:82.

    Article  PubMed  PubMed Central  Google Scholar 

  170. Aminian K, Najafi B, Bula C, Leyvraz PF, Robert P. Spatiotemporal parameters of gait measured by an ambulatory system using miniature gyroscopes. J Biomech. 2002;35(5):689–99.

    Article  PubMed  Google Scholar 

  171. Hamacher D, Hamacher D, Taylor WR, Singh NB, Schega L. Towards clinical application: repetitive sensor position re-calibration for improved reliability of gait parameters. Gait Posture. 2014;39(4):1146–8.

    Article  PubMed  Google Scholar 

  172. Hausdorff JM. Gait variability: methods, modeling and meaning. J Neuroeng Rehabil. 2005;2:19.

    Article  PubMed  PubMed Central  Google Scholar 

  173. Allen J, Kautz S, Neptune R. Step length asymmetry is representative of compensatory mechanisms used in post-stroke hemiparetic walking. Gait Posture. 2011;33(4):538–43.

    Article  PubMed  PubMed Central  Google Scholar 

  174. Chen G, Patten C, Kothari D, Zajac F. Gait differences between individuals with post-stroke hemiparesis and non-disabled controls at matched speeds. Gait Posture. 2005;22(1):51–6.

    Article  PubMed  Google Scholar 

  175. Esser P, Dawes H, Collet J, Feltham MG, Howells K. Assessment of spatiotemporal gait parameters using inertial measurement units in neurological populations. Gait Posture. 2011;34(4):558–60.

    Article  PubMed  Google Scholar 

  176. Hubble R, Naughton G, Silburn P, Cole M. Wearable sensor use for assessing standing balance and walking stability in people with Parkinson’s disease: a systematic review. PLoS One. 2015;10(4):e0123705.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  177. Allum JH, Adkin AL, Carpenter MG, Held-Ziolkowska M, Honegger F, Pierchala K. Trunk sway measures of postural stability during clinical balance tests: effects of a unilateral vestibular deficit. Gait Posture. 2001;14(3):227–37.

    Article  CAS  PubMed  Google Scholar 

  178. Howcroft J, Kofman J, Lemaire ED. Review of fall risk assessment in geriatric populations using inertial sensors. J Neuroeng Rehabil. 2013;10(1):91.

    Article  PubMed  PubMed Central  Google Scholar 

  179. Wittmann F, Lambercy O, Held J, Gonzenbach R, Höver R, Starkey M, et al. Assessment-driven arm therapy at home using an IMU-based virtual reality system. Proceedings of the IEEE International Conference on Rehabilitation Robotics (ICORR), Singapore. 2015:707–12.

    Google Scholar 

  180. Rihar A, Mihelj M, Pasic J, Kolar J, Munih M. Infant trunk posture and arm movement assessment using pressure mattress, inertial and magnetic measurement units (IMUs). J Neuroeng Rehabil. 2014;11:133.

    Article  PubMed  PubMed Central  Google Scholar 

  181. Weiss A, Herman T, Plotnik M, Brozgol M, Maidan I, Giladi N, et al. Can an accelerometer enhance the utility of the Timed Up & Go Test when evaluating patients with Parkinson’s disease? Med Eng Phys. 2010;32(2):119–25.

    Article  PubMed  Google Scholar 

  182. Wade E, Parmandi AR, Mataric MJ. Automated administration of the Wolf Motor Function Test for post-stroke assessment. Proceedings of international conference on pervasive computing technologies for healthcare. IEEE, Munich. 2010:1–7.

    Google Scholar 

  183. Del Din S, Patel S, Cobelli C, Bonato P. Estimating Fugl-Meyer clinical scores in stroke survivors using wearable sensors. Proceedings of IEEE engineering in medicine and biology conference, Boston. 2011:5839–42.

    Google Scholar 

  184. Carpinella I, Cattaneo D, Ferrarin M. Quantitative assessment of upper limb motor function in multiple sclerosis using an instrumented Action Research Arm Test. J Neuroeng Rehabil. 2014;11:67.

    Article  PubMed  PubMed Central  Google Scholar 

  185. Leuenberger K, Gassert R. Low-power sensor module for long-term activity monitoring. Proceedings of IEEE engineering in medicine and biology conference, Boston. 2011:2237–41.

    Google Scholar 

  186. Leuenberger K, Gonzenbach R, Wiedmer E, Luft A, Gassert R. Classification of stair ascent and descent in stroke patients. Proceedings of international conference on wearable and implantable body sensor networks workshops. IEEE, Zurich. 2014:11–6.

    Google Scholar 

  187. Lunenburger L, Oertig M, Brunschwiler A, Colombo G, Riener R, Dietz V. Assessment of spasticity with the robotic gait orthosis Lokomat. Proceedings of 6th world congress on brain injury. ICMS Pty Ltd, Melbourne. 2005.

    Google Scholar 

  188. Campolo D, Taffoni F, Formica D, Iverson J, Sparaci L, Keller F, et al. Embedding inertial-magnetic sensors in everyday objects: assessing spatial cognition in children. J Integr Neurosci. 2012;11(1):103–16.

    Article  PubMed  PubMed Central  Google Scholar 

  189. Memberg WD, Crago PE. Instrumented objects for quantitative evaluation of hand grasp. J Rehabil Res Dev. 1997;34(1):82–90.

    CAS  PubMed  Google Scholar 

  190. Colombo R, Cusmano I, Sterpi I, Mazzone A, Delconte C, Pisano F. Test-retest reliability of robotic assessment measures for the evaluation of upper limb recovery. IEEE Trans Neural Syst Rehabil Eng. 2014;22(5):1020–9.

    Article  PubMed  Google Scholar 

  191. Metzger JC, Lambercy O, Gassert R. Performance comparison of interaction control strategies on a hand rehabilitation robot. Proceedings of the IEEE International Conference on Rehabilitation Robotics (ICORR), Singapore. 2015:846–51.

    Google Scholar 

  192. Metzger JC, Lambercy O, Califfi A, Dinacci D, Petrillo C, Rossi P, et al. Assessment-driven selection and adaptation of exercise difficulty in robot-assisted therapy: a pilot study with a hand rehabilitation robot. J Neuroeng Rehabil. 2014;11:154.

    Article  PubMed  PubMed Central  Google Scholar 

  193. Colombo R, Sterpi I, Mazzone A, Delconte C, Pisano F. Taking a lesson from patients’ recovery strategies to optimize training during robot-aided rehabilitation. IEEE Trans Neural Syst Rehabil Eng. 2012;20(3):276–85.

    Article  PubMed  Google Scholar 

  194. Cameirao MS, Badia SB, Oller ED, Verschure PF. Neurorehabilitation using the virtual reality based Rehabilitation Gaming System: methodology, design, psychometrics, usability and validation. J Neuroeng Rehabil. 2010;7:48.

    Article  PubMed  PubMed Central  Google Scholar 

  195. Kan P, Huq R, Hoey J, Goetschalckx R, Mihailidis A. The development of an adaptive upper-limb stroke rehabilitation robotic system. J Neuroeng Rehabil. 2011;8:33.

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Olivier Lambercy PhD .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing

About this chapter

Cite this chapter

Lambercy, O., Maggioni, S., Lünenburger, L., Gassert, R., Bolliger, M. (2016). Robotic and Wearable Sensor Technologies for Measurements/Clinical Assessments. In: Reinkensmeyer, D., Dietz, V. (eds) Neurorehabilitation Technology. Springer, Cham. https://doi.org/10.1007/978-3-319-28603-7_10

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-28603-7_10

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-28601-3

  • Online ISBN: 978-3-319-28603-7

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics