Skip to main content

Management of Blast Related Injuries

  • Chapter
  • First Online:
Trauma and Combat Critical Care in Clinical Practice

Abstract

Blast related injuries are common in military conflict and can also result from action by terrorist groups against civilian targets. The pattern of injury depends on the type of explosive, with high explosives capable of causing unique effects through the action of the blast wave. The environment is critically important in determining the effects of blast injury, with blast in enclosed spaces or underwater magnifying the effect of blast wave force transmission. Blasts can also cause ballistic injury by energising projectiles, blunt trauma from structural collapse, and thermal and toxic injuries. “Blast Lung” is imprecisely defined but results from damage at the alveolar capillary interface with the predominant feature being pulmonary haemorrhage. Death is most commonly caused by severe cardiovascular impairment resulting from arterial gas embolism. The incidence of severe respiratory failure in survivors of blast injury is probably quite low. Management is essential supportive and similar to that applied to other forms of lung injury in critically injured patients. Attention should be paid to lung protective ventilation and a conservative fluid management strategy. Specific novel therapies such as pro or anti- coagulants and steroids remain unproven.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 44.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 59.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Belanger HG, Scott SG, Scholten J, Curtiss G, Vanderploeg RD. Utility of mechanism-of-injury-based assessment and treatment: blast injury program case illustration. J Rehabil Res Dev. 2005;42(4):403–12.

    Article  PubMed  Google Scholar 

  2. Finlay SE, Earby M, Baker DJ, Murray VSG. Explosions and human health: the long-term effects of blast injury. Prehosp Disaster Med. 2012;27(4):385–91.

    Article  PubMed  Google Scholar 

  3. Champion HR, Holcomb JB, Young LA. Injuries from explosions: physics, biophysics, pathology, and required research focus. J Trauma. 2009;66(5):1468–77; discussion 1477.

    Article  PubMed  Google Scholar 

  4. de Ceballos JPG, Turégano-Fuentes F, Pérez-Díaz D, Sanz-Sánchez M, Martin-Llorente C, Guerrero-Sanz JE. 11 March 2004: the terrorist bomb explosions in Madrid, Spain--an analysis of the logistics, injuries sustained and clinical management of casualties treated at the closest hospital. Crit Care. 2005;9(1):104–11.

    Article  PubMed  Google Scholar 

  5. Martí M, Parrón M, Baudraxler F, Royo A, Gómez León N, Alvarez-Sala R. Blast injuries from Madrid terrorist bombing attacks on March 11, 2004. Emerg Radiol. 2006;13(3):113–22.

    Article  PubMed  Google Scholar 

  6. Elsayed NM, Gorbunov NV, Kagan VE. A proposed biochemical mechanism involving hemoglobin for blast overpressure-induced injury. Toxicology. 1997;121(1):81–90.

    Article  CAS  PubMed  Google Scholar 

  7. Kirkman E, Watts S. Characterization of the response to primary blast injury. Philos Trans R Soc Lond B Biol Sci. 2011;366(1562):286–90.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Elsayed NM. Toxicology of blast overpressure. Toxicology. 1997;121(1):1–15.

    Article  CAS  PubMed  Google Scholar 

  9. Almogy G, Luria T, Richter E, Pizov R, Bdolah-Abram T, Mintz Y, et al. Can external signs of trauma guide management?: Lessons learned from suicide bombing attacks in Israel. Arch Surg. 2005;140(4):390–3.

    Article  PubMed  Google Scholar 

  10. Gorbunov NV, Asher LV, Ayyagari V, Atkins JL. Inflammatory leukocytes and iron turnover in experimental hemorrhagic lung trauma. Exp Mol Pathol. 2006;80(1):11–25.

    Article  CAS  PubMed  Google Scholar 

  11. Gorbunov NV, Elsayed NM, Kisin ER, Kozlov AV, Kagan VE. Air blast-induced pulmonary oxidative stress: interplay among hemoglobin, antioxidants, and lipid peroxidation. Am J Physiol. 1997;272(2 Pt 1):L320–34.

    CAS  PubMed  Google Scholar 

  12. Gorbunov NV, McFaul SJ, Januszkiewicz A, Atkins JL. Pro-inflammatory alterations and status of blood plasma iron in a model of blast-induced lung trauma. Int J Immunopathol Pharmacol. 2005;18(3):547–56.

    CAS  PubMed  Google Scholar 

  13. Leibovici D, Gofrit ON, Shapira SC. Eardrum perforation in explosion survivors: is it a marker of pulmonary blast injury? Ann Emerg Med. 1999;34(2):168–72.

    Article  CAS  PubMed  Google Scholar 

  14. Ohnishi M, Kirkman E, Guy RJ, Watkins PE. Reflex nature of the cardiorespiratory response to primary thoracic blast injury in the anaesthetised rat. Exp Physiol. 2001;86(3):357–64.

    Article  CAS  PubMed  Google Scholar 

  15. Irwin RJ, Lerner MR, Bealer JF, Mantor PC, Brackett DJ, Tuggle DW. Shock after blast wave injury is caused by a vagally mediated reflex. J Trauma. 1999;47(1):105–10.

    Article  CAS  PubMed  Google Scholar 

  16. Harban F, Kirkman E, Kenward CE, Watkins PE. Primary thoracic blast injury causes acute reduction in cardiac function in the anaesthetised pig. J Physiol (Lond). 2001;533:81.

    Google Scholar 

  17. Žunić G, Romić P, Vueljić M, Jovanikić O. Very early increase in nitric oxide formation and oxidative cell damage associated with the reduction of tissue oxygenation is a trait of blast casualties. Vojnosanit Pregl. 2005;62(4):273–80.

    Article  PubMed  Google Scholar 

  18. Žunić G, Pavlović R, Maličević Ž, Savić V, Cernak I. Pulmonary blast injury increases nitric oxide production, disturbs arginine metabolism, and alters the plasma free amino acid pool in rabbits during the early posttraumatic period. Nitric Oxide. 2000;4(2):123–8.

    Article  PubMed  Google Scholar 

  19. Gorbunov NV, Das DK, Goswami SK, Gurusami N, Atkins JL. Nitric oxide (NO), redox signalling, and pulmonary inflammation in a model of polytrauma. Proceedings of the XIII Congress of the Society for Free Radical Research International. Davos, Switzerland. 2006, pp. 2–4.

    Google Scholar 

  20. Kirkman E, Watts S, Cooper G. Blast injury research models. Philos Trans R Soc Lond B Biol Sci. 2011;366(1562):144–59.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Clemedson CJ. An experimental study of air blast injuries. Acta Physiol Scand. 1949;18:1–200.

    Article  Google Scholar 

  22. Krohn PL, Whitteridge D, Zuckerman S. Physiological effects of blast. Lancet. 1942;i:252–8.

    Google Scholar 

  23. Clemedson CJ, Hultman HI. Air embolism and the cause of death in blast injury. Mil Surg. 1954;114(6):424–37.

    CAS  PubMed  Google Scholar 

  24. Clemedson CJ, Pettersson H. Genesis of respiratory and circulatory changes in blast injury. Am J Physiol. 1953;174(2):316–20.

    CAS  PubMed  Google Scholar 

  25. Clemedson CJ, HULTMAN H. Cardiac output in early phase of blast injury in rabbits. Am J Physiol. 1958;194(3):601–6.

    CAS  PubMed  Google Scholar 

  26. Hooker DR. Physiological effects of air concussion. Am J Physiol. 1924;67:219–73.

    Google Scholar 

  27. Robb-Smith AHT. Pulmonary fat embolism. Lancet. 1941;i:135.

    Google Scholar 

  28. Cohen H, Biskind GR. Pathologic aspects of atmospheric blast injuries in man. Arch Pathol (Chic). 1946;42:12–34.

    CAS  Google Scholar 

  29. Zuckerman S. Experimental study of blast injuries to the lung. Lancet. 1940;ii:219–24.

    Google Scholar 

  30. Zuckerman S. Discussion on the problem of blast injuries. Proc R Soc Med. 1941;34:171–88.

    Google Scholar 

  31. Mott FW. The effects of high explosives upon the central nervous system. Lancet. 1916;187(4826):441–49.

    Google Scholar 

  32. Clemedson CJ. Shock wave transmission to the central nervous system. Acta Physiol Scand. 1956;37(2–3):204–14.

    Article  CAS  PubMed  Google Scholar 

  33. Benzinger T. Physiological effects of blast in air and water. German aviation medicine in World War II, Vol 2. Washington, DC: US Government Printing Office; 1950, pp. 1225–59.

    Google Scholar 

  34. Clemedson CJ, Hultman H, Gronberg B. Respiration and pulmonary gas exchange in blast injury. J Appl Physiol. 1953;6(4):213–20.

    CAS  PubMed  Google Scholar 

  35. Frykberg ER, Tepas III JJ. Terrorist bombings. Lessons learned from Belfast to Beirut. Ann Surg. 1988;208(5):569–76.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Arnold JL, Halpern P, Tsai MC, Smithline H. Mass casualty terrorist bombings: a comparison of outcomes by bombing type. Ann Emerg Med. 2004;43(2):263–73.

    Article  PubMed  Google Scholar 

  37. Mackenzie IM, Tunnicliffe B. Blast injuries to the lung: epidemiology and management. Philos Trans R Soc Lond B Biol Sci. 2011;366(1562):295–9.

    Article  PubMed  PubMed Central  Google Scholar 

  38. Huller T, Bazini Y. Blast injuries of the chest and abdomen. Arch Surg. 1970;100(1):24–30.

    Article  CAS  PubMed  Google Scholar 

  39. Conventional Warfare: Ballistic, Blast, and Burn Injuries (Textbook of Military Medicine Series on Combat Casualty Care, Part 1 Volume 5). Washington, DC: Office of the Surgeon General of the U.S. Army; 1991.

    Google Scholar 

  40. Hirshberg B, Oppenheim-Eden A, Pizov R, Sklair-Levi M, Rivkin A, Bardach E, et al. Recovery from blast lung injury: one-year follow-up. Chest. 1999;116(6):1683–8.

    Article  CAS  PubMed  Google Scholar 

  41. Bein T, Zonies D, Philipp A, Zimmermann M, Osborn EC, Allan PF, et al. Transportable extracorporeal lung support for rescue of severe respiratory failure in combat casualties. J Trauma Acute Care Surg. 2012;73(6):1450–6.

    Article  PubMed  Google Scholar 

  42. Heslet L, Nielsen JD, Nepper-Christensen S. Local pulmonary administration of factor VIIa (rFVIIa) in diffuse alveolar hemorrhage (DAH) – a review of a new treatment paradigm. Biologics. 2012;6:37–46. doi:10.2147/BTT.S25507.

    CAS  PubMed  PubMed Central  Google Scholar 

  43. Miller AC, Elamin EM, Suffredini AF. Inhaled anticoagulation regimens for the treatment of smoke inhalation-associated acute lung injury: a systematic review. Crit Care Med. 2014;42(2):413–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Emrys Kirkman OBE, PhD .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Crown Copyright

About this chapter

Cite this chapter

Kirkman, E., Reade, M.C. (2016). Management of Blast Related Injuries. In: Hutchings, S. (eds) Trauma and Combat Critical Care in Clinical Practice. In Clinical Practice. Springer, Cham. https://doi.org/10.1007/978-3-319-28758-4_10

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-28758-4_10

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-28756-0

  • Online ISBN: 978-3-319-28758-4

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics