Skip to main content

Mechanisms of Hormone Regulation for Drought Tolerance in Plants

  • Chapter
  • First Online:
Drought Stress Tolerance in Plants, Vol 1

Abstract

Drought stress limits the growth and productivity of plants through significant changes at the physiological, cellular, biochemical, and molecular levels. Considerable progress has been made elucidating on how plant hormones contribute to or influence whole-plant drought responses. Advancements in transcriptomics coinciding with mutant analysis have suggested that specific hormones regulate processes such as leaf senescence, antioxidant metabolism, carbon balance, and gas exchange during periods of drought stress. Hormones including abscisic acid, auxins, cytokinins, gibberellins, ethylene, salicylates, and jasmonates may independently regulate these plant responses through regulation of transcription factors and subsequent downstream induction or repression of stress-responsive genes. Alternatively, hormone-to-hormone or hormone-to-sugar cross talk may facilitate the drought responses. This chapter provides an overview of the major physiological processes regulated by plant hormones and the roles that different hormones serve during physiological responses to drought stress. Current knowledge of hormone-to-hormone or hormone-to-sugar cross talk regulating physiological responses to drought stress is also discussed. Suggestions for ongoing and future research are provided, such as which molecules perceive a specific hormone to then initiate signal transduction cascades during drought stress. Cross talk signals derived from hormone-to-hormone or hormone-to-sugar or secondary messengers (i.e., calcium or ROS) are not yet clear and also need to be investigated further. Research addressing the unanswered questions of hormone-signaling perception and cross talk among hormones and other metabolites will provide further insights into molecular factors controlling hormone regulation of plant tolerance to drought stress.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

ABA:

Abscisic acid

APX:

Ascorbate peroxidase

ARF:

Auxin response factor

ASA:

Ascorbic acid

CAT:

Catalase

CK:

Cytokinin

ERF:

Ethylene response factor

GA:

Gibberellic acid

GR:

Glutathione reductase

GSH:

Glutathione

IAA:

Indole-3-acetic acid

JA:

Jasmonic acid

MDA:

Malondialdehyde

MeJA:

Methyl jasmonate

POD:

Peroxidase

ROS:

Reactive oxygen species

SA:

Salicylic acid

SOD:

Superoxide dismutase

References

  • Abrams MD. Genotypic and phenotypic variation as stress adaptations in temperate tree species: a review of several case studies. Tree Physiol. 1994;14(7):833–42.

    Article  PubMed  Google Scholar 

  • Acharya BR, Assmann SM. Hormone interactions in stomatal function. Plant Mol Biol. 2009;69(4):451–62.

    Article  CAS  PubMed  Google Scholar 

  • Addicott FT, Lynch RS. Acceleration and retardation of abscission by indoleacetic acid. Science. 1951;114(2974):688–9.

    Article  CAS  PubMed  Google Scholar 

  • Agarwal S, Sairam RK, Srivastava GC, Meena RC. Changes in antioxidant enzymes activity and oxidative stress by abscisic acid and salicylic acid in wheat genotypes. Biol. Plant. 2005;49(4):541–50.

    Article  CAS  Google Scholar 

  • Akter N, Islam MR, Karim MA, Hossain T. Alleviation of drought stress in maize by exogenous application of gibberellic acid and cytokinin. J Crop Sci Biotech. 2014;17(1):41–8.

    Article  Google Scholar 

  • Alonso-Ramírez A, Rodríguez D, Reyes D, Jiménez JA, Nicolás G, López-Climent M, Gómez-Cadenas A, Nicolás C. Evidence for a role of gibberellins in salicylic acid-modulated early plant responses to abiotic stress in Arabidopsis seeds. Plant Physiol. 2009a;150(3):1335–44.

    Article  PubMed  PubMed Central  Google Scholar 

  • Alonso-Ramírez A, Rodríguez D, Reyes D, Jiménez JA, Nicolás G, López-Climent M, Gómez-Cadenas A, Nicolás C. Cross-talk between gibberellins and salicylic acid in early stress responses in Arabidopsis thaliana seeds. Plant Signal Behav. 2009b;4(8):750–1.

    Article  PubMed  PubMed Central  Google Scholar 

  • Anjum SA, Wang L, Farooq M, Khan I, Xue L. Methyl jasmonate‐induced alteration in lipid peroxidation, antioxidative defence system and yield in soybean under drought. J Agron Crop Sci. 2011;197(4):296–301.

    Article  CAS  Google Scholar 

  • Apel K, Hirt H. Reactive oxygen species: metabolism, oxidative stress, and signal transduction. Annu Rev Plant Biol. 2004;55:373–99.

    Article  CAS  PubMed  Google Scholar 

  • Arenas-Huertero F, Arroyo A, Zhou L, Sheen J, Leon P. Analysis of Arabidopsis glucose insensitive mutants, gin5 and gin6, reveals a central role of the plant hormone ABA in the regulation of plant vegetative development by sugar. Genes Dev. 2000;14(16):2085–96.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Atkinson NJ, Urwin PE. The interaction of plant biotic and abiotic stresses: from genes to the field. J Exp Bot. 2012;63(10):3523–43.

    Article  CAS  PubMed  Google Scholar 

  • Balbi V, Devoto A. Jasmonate signalling network in Arabidopsis thaliana: crucial regulatory nodes and new physiological scenarios. New Phytol. 2008;177(2):301–18.

    Article  CAS  PubMed  Google Scholar 

  • Bartoli CG, Gomez F, Gergoff G, Guiamét JJ, Puntarulo S. Up-regulation of the mitochondrial alternative oxidase pathway enhances photosynthetic electron transport under drought conditions. J Exp Bot. 2005;56(415):1269–76.

    Article  CAS  PubMed  Google Scholar 

  • Blokhina O, Virolainen E, Fagerstedt KV. Antioxidants, oxidative damage and oxygen deprivation stress: a review. Ann Bot. 2003;91(2):179–94.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bota J, Medrano H, Flexas J. Is photosynthesis limited by decreased Rubisco activity and RuBP content under progressive water stress? New Phytol. 2004;162(3):671–81.

    Article  CAS  Google Scholar 

  • Bowler C, Fluhr R. The role of calcium and activated oxygens as signals for controlling cross-tolerance. Trends Plant Sci. 2000;5(6):241–6.

    Article  CAS  PubMed  Google Scholar 

  • Bréda N, Huc R, Granier A, Dreyer E. Temperate forest trees and stands under severe drought: a review of ecophysiological responses, adaptation processes and long-term consequences. Ann Forest Sci. 2006;63(6):625–44.

    Article  Google Scholar 

  • Broekaert WF, Delauré SL, De-Bolle MF, Cammue BP. The role of ethylene in host-pathogen interactions. Annu Rev Phytopathol. 2006;44:393–416.

    Article  CAS  PubMed  Google Scholar 

  • Brossa R, López-Carbonell M, Jubany-Marí T, Alegre L. Interplay between abscisic acid and jasmonic acid and its role in water-oxidative stress in wild-type, ABA-deficient, JA-deficient, and ascorbate-deficient Arabidopsis plants. J Plant Growth Regul. 2011;30(3):322–33.

    Article  CAS  Google Scholar 

  • Bu Q, Jiang H, Li C-B, Zhai Q, Zhang J, Wu X, Sun J, Xie Q, Li C. Role of the Arabidopsis thaliana NAC transcription factors ANAC019 and ANAC055 in regulating jasmonic acid-signaled defense responses. Cell Res. 2008;18(7):756–67.

    Article  CAS  PubMed  Google Scholar 

  • Buchanan-Wollaston V. The molecular biology of leaf senescence. J Exp Bot. 1997;48(2):181–99.

    Article  Google Scholar 

  • Buchanan‐Wollaston V, Earl S, Harrison E, Mathas E, Navabpour S, Page T, Pink D. The molecular analysis of leaf senescence: a genomics approach. Plant Biotech J. 2003;1(1):3–22.

    Article  Google Scholar 

  • Casimiro I, Beeckman T, Graham N, Bhalerao R, Zhang H, Casero P, Sandberg G, Bennett MJ. Dissecting Arabidopsis lateral root development. Trends Plant Sci. 2003;8(4):165–71.

    Article  CAS  PubMed  Google Scholar 

  • Cattivelli L, Rizza F, Badeck FW, Mazzucotelli E, Mastrangelo AM, Francia E, Maré C, Tondelli A, Stanca AM. Drought tolerance improvement in crop plants: an integrated view from breeding to genomics. Field Crops Res. 2008;105(1):1–14.

    Article  Google Scholar 

  • Chaves MM, Pereira JS, Maroco J, Rodrigues ML, Ricardo CPP, Osório ML, Carvalho I, Faria T, Pinheiro C. How plants cope with water stress in the field? Photosynthesis and growth. Ann Bot. 2002;89(7):907–16.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chaves MM, Maroco JP, Pereira JS. Understanding plant responses to drought-from genes to the whole plant. Func Plant Biol. 2003;30(3):239–64.

    Article  CAS  Google Scholar 

  • Chaves MM, Flexas J, Pinheiro C. Photosynthesis under drought and salt stress: regulation mechanisms from whole plant to cell. Ann Bot. 2009;103(4):551–60.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chen H, Lai Z, Shi J, Xiao Y, Chen Z, Xu X. Roles of Arabidopsis WRKY18, WRKY40 and WRKY60 transcription factors in plant responses to abscisic acid and abiotic stress. BMC Plant Biol. 2010;10(1):281–96.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cheng H, Song S, Xiao L, Soo HM, Cheng Z, Xie D, Peng J. Gibberellin acts through jasmonate to control the expression of MYB21, MYB24, and MYB57 to promote stamen filament growth in Arabidopsis. PLoS Genet. 2009;5(3):e1000440.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Condit R, Hubbell SP, Foster RB. Mortality rates of 205 neotropical tree and shrub species and the impact of a severe drought. Ecol Mono. 1995;65(4):419–39.

    Article  Google Scholar 

  • Cramer GR, Urano K, Delrot S, Pezzotti M, Shinozaki K. Effects of abiotic stress on plants: a systems biology perspective. BMC Plant Biol. 2011;11(1):163–77.

    Article  PubMed  PubMed Central  Google Scholar 

  • Csiszár J, Szabó M, Erdei L, Márton L, Horváth F, Tari I. Auxin autotrophic tobacco callus tissues resist oxidative stress: the importance of glutathione S-transferase and glutathione peroxidase activities in auxin heterotrophic and autotrophic calli. J Plant Physiol. 2004;161(6):691–9.

    Article  PubMed  Google Scholar 

  • Cutler SR, Rodriguez PL, Finkelstein RR, Abrams SR. Abscisic acid: emergence of a core signaling network. Annu Rev Plant Biol. 2010;61:651–79.

    Article  CAS  PubMed  Google Scholar 

  • Daszkowska-Golec A, Szarejko I. Open or close the gate-stomata action under the control of phytohormones in drought stress conditions. Front Plant Sci. 2013;4(138):1–16.

    Google Scholar 

  • Depuydt S, Hardtke CS. Hormone signalling cross talk in plant growth regulation. Curr Biol. 2011;21(9):R365–73.

    Article  CAS  PubMed  Google Scholar 

  • Dodd IC. Hormonal interactions and stomatal responses. J Plant Growth Regul. 2003;22(1):32–46.

    Article  CAS  Google Scholar 

  • Dominguez PG, Frankel N, Mazuch J, Balbo I, Iusem N, Fernie AR, Carrari F. ASR1 mediates glucose-hormone cross talk by affecting sugar trafficking in tobacco plants. Plant Physiol. 2013;161(3):1486–500.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ellis CM, Nagpal P, Young JC, Hagen G, Guilfoyle TJ, Reed JW. AUXIN RESPONSE FACTOR1 and AUXIN RESPONSE FACTOR2 regulate senescence and floral organ abscission in Arabidopsis thaliana. Development. 2005;132(20):4563–74.

    Article  CAS  PubMed  Google Scholar 

  • Evans NH. Modulation of guard cell plasma membrane potassium currents by methyl jasmonate. Plant Physiol. 2003;131(1):8–11.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Eveland AL, Jackson DP. Sugars, signalling, and plant development. J Exp Bot. 2012;63(9):3367–77.

    Article  CAS  PubMed  Google Scholar 

  • Farooq M, Wahid A, Kobayashi N, Fujita D, Basra SMA (2009) Plant drought stress: effects, mechanisms and management. In Sustainable Agriculture, Springer, The Netherlands. p. 153–188.

    Google Scholar 

  • Fleet CM, Sun TP. A DELLAcate balance: the role of gibberellin in plant morphogenesis. Curr Opin Plant Biol. 2005;8(1):77–85.

    Article  CAS  PubMed  Google Scholar 

  • Flexas J, Medrano H. Drought‐inhibition of photosynthesis in C3 plants: stomatal and non‐stomatal limitations revisited. Ann Bot. 2002;89(2):183–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fujii H, Chinnusamy V, Rodrigues A, Rubio S, Antoni R, Park S-Y, Cutler SR, Sheen J, Rodriguez PL, Zhu J-K. In vitro reconstitution of an abscisic acid signalling pathway. Nature. 2009;462(7273):660–4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fujita M, Fujita Y, Noutoshi Y, Takahashi F, Narusaka Y, Yamaguchi-Shinozaki K, Shinozaki K. Crosstalk between abiotic and biotic stress responses: a current view from the points of convergence in the stress signaling networks. Curr Opin Plant Biol. 2006;9(4):436–42.

    Article  PubMed  Google Scholar 

  • Gao XP, Wang XF, Lu YF, Zhang LY, Shen YY, Liang Z, Zhang DP. Jasmonic acid is involved in the water‐stress‐induced betaine accumulation in pear leaves. Plant Cell Environ. 2004;27(4):497–507.

    Article  CAS  Google Scholar 

  • Gao X, Yuan HM, Hu YQ, Li J, Lu YT. Mutation of Arabidopsis CATALASE2 results in hyponastic leaves by changes of auxin levels. Plant Cell Environ. 2014;37(1):175–88.

    Article  CAS  PubMed  Google Scholar 

  • Ghassemian M, Nambara E, Cutler S, Kawaide H, Kamiya Y, McCourt P. Regulation of abscisic acid signaling by the ethylene response pathway in Arabidopsis. Plant Cell. 2000;12(7):1117–26.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gibson SI. Control of plant development and gene expression by sugar signaling. Curr Opin Plant Biol. 2005;8(1):93–102.

    Article  CAS  PubMed  Google Scholar 

  • Graham PH, Vance CP. Legumes: importance and constraints to greater use. Plant Physiol. 2003;131(3):872–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Guo H, Ecker JR. The ethylene signaling pathway: new insights. Curr Opin Plant Biol. 2004;7(1):40–9.

    Article  CAS  PubMed  Google Scholar 

  • Ha S, Vankova R, Yamaguchi-Shinozaki K, Shinozaki K, Tran LSP. Cytokinins: metabolism and function in plant adaptation to environmental stresses. Trends Plant Sci. 2012;17(3):172–9.

    Article  CAS  PubMed  Google Scholar 

  • Hacke UG, Sperry JS, Pittermann J. Drought experience and cavitation resistance in six shrubs from the Great Basin, Utah. Basic Appl Ecol. 2000;1(1):31–41.

    Article  Google Scholar 

  • Hadiarto T, Tran LSP. Progress studies of drought-responsive genes in rice. Plant Cell Rep. 2011;30(3):297–310.

    Article  CAS  PubMed  Google Scholar 

  • Hanjra MA, Qureshi ME. Global water crisis and future food security in an era of climate change. Food Policy. 2010;35(5):365–77.

    Article  Google Scholar 

  • Hanson J, Smeekens S. Sugar perception and signaling-an update. Curr Opin Plant Biol. 2009;12(5):562–7.

    Article  CAS  PubMed  Google Scholar 

  • Harb A, Krishnan A, Ambavaram MM, Pereira A. Molecular and physiological analysis of drought stress in Arabidopsis reveals early responses leading to acclimation in plant growth. Plant Physiol. 2010;154(3):1254–71.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Havlova M, Dobrev PI, Motyka VAC, Štorchová H, Libus J, Dobra J, Malbeck J, Gaudinova A, Vankova R. The role of cytokinins in responses to water deficit in tobacco plants over‐expressing trans‐zeatin O‐glucosyltransferase gene under 35S or SAG12 promoters. Plant Cell Environ. 2008;31(3):341–53.

    Article  CAS  PubMed  Google Scholar 

  • Hayat S, Hasan SA, Fariduddin Q, Ahmad A. Growth of tomato (Lycopersicon esculentum) in response to salicylic acid under water stress. J Plant Interact. 2008;3(4):297–304.

    Article  CAS  Google Scholar 

  • Hayat Q, Hayat S, Irfan M, Ahmad A. Effect of exogenous salicylic acid under changing environment: a review. Environ Exp Bot. 2010;68(1):14–25.

    Article  CAS  Google Scholar 

  • Himmelbach A, Yang Y, Grill E. Relay and control of abscisic acid signaling. Curr Opin Plant Biol. 2003;6(5):470–9.

    Article  CAS  PubMed  Google Scholar 

  • Hirayama T, Shinozaki K. Perception and transduction of abscisic acid signals: keys to the function of the versatile plant hormone ABA. Trends Plant Sci. 2007;12(8):343–51.

    Article  CAS  PubMed  Google Scholar 

  • Hörtensteiner S, Feller U. Nitrogen metabolism and remobilization during senescence. J Exp Bot. 2002;53(370):927–37.

    Article  PubMed  Google Scholar 

  • Horváth E, Szalai G, Janda T. Induction of abiotic stress tolerance by salicylic acid signaling. J Plant Growth Regul. 2007;26(3):290–300.

    Article  CAS  Google Scholar 

  • Hossain MA, Munemasa S, Uraji M, Nakamura Y, Mori IC, Murata Y. Involvement of endogenous abscisic acid in methyl jasmonate-induced stomatal closure in Arabidopsis. Plant Physiol. 2011;156(1):430–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Huang B. Recent advances in drought and heat stress physiology of turfgrass: a review. Int Conf Turfgrass Manage Sci Sports Fields. 2003;661:185–92.

    Google Scholar 

  • Huang D, Wu W, Abrams SR, Cutler AJ. The relationship of drought-related gene expression in Arabidopsis thaliana to hormonal and environmental factors. J Exp Bot. 2008;59(11):2991–3007.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Huang B, DaCosta M, Jiang Y. Research advances in mechanisms of turfgrass tolerance to abiotic stresses: from physiology to molecular biology. Crit Rev Plant Sci. 2014;33(2-3):141–89.

    Article  CAS  Google Scholar 

  • Hubbard KE, Nishimura N, Hitomi K, Getzoff ED, Schroeder JI. Early abscisic acid signal transduction mechanisms: newly discovered components and newly emerging questions. Genes Dev. 2010;24(16):1695–708.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hung KT, Kao CH. Nitric oxide counteracts the senescence of rice leaves induced by abscisic acid. J Plant Physiol. 2003;160(8):871–9.

    Article  CAS  PubMed  Google Scholar 

  • Ikegami K, Okamoto M, Seo M, Koshiba T. Activation of abscisic acid biosynthesis in the leaves of Arabidopsis thaliana in response to water deficit. J Plant Res. 2009;122(2):235–43.

    Article  CAS  PubMed  Google Scholar 

  • Imamura A, Hanaki N, Umeda H, Nakamura A, Suzuki T, Ueguchi C, Mizuno T. Response regulators implicated in His-to-Asp phosphotransfer signaling in Arabidopsis. Proc Natl Acad Sci U S A. 1998;95(5):2691–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jaleel CA, Gopi R, Manivannan P, Sankar B, Kishorekumar A, Panneerselvam R. Antioxidant potentials and ajmalicine accumulation in Catharanthus roseus after treatment with gibberellic acid. Colloids Surf B Biointerfaces. 2007;60(2):195–200.

    Article  CAS  PubMed  Google Scholar 

  • Jaleel CA, Manivannan P, Wahid A, Farooq M, Al-Juburi HJ, Somasundaram R, Panneerselvam R. Drought stress plants: a review on morphological characteristics and pigments composition. Int J Agric Biol. 2009;11:100–5.

    Google Scholar 

  • Jiang M, Zhang J. Effect of abscisic acid on active oxygen species, antioxidative defence system and oxidative damage in leaves of maize seedlings. Plant Cell Physiol. 2001;42(11):1265–73.

    Article  CAS  PubMed  Google Scholar 

  • Jiang M, Zhang J. Water stress‐induced abscisic acid accumulation triggers the increased generation of reactive oxygen species and up‐regulates the activities of antioxidant enzymes in maize leaves. J Exp Bot. 2002;53(379):2401–10.

    Article  CAS  PubMed  Google Scholar 

  • Jiang Y, Liang G, Yu D. Activated expression of WRKY57 confers drought tolerance in Arabidopsis. Mol Plant. 2012;5(6):1375–88.

    Article  CAS  PubMed  Google Scholar 

  • Jibran R, Hunter DA, Dijkwel PP. Hormonal regulation of leaf senescence through integration of developmental and stress signals. Plant Mol Biol. 2013;82(6):547–61.

    Article  CAS  PubMed  Google Scholar 

  • Jo Y, Hyun TK. Genome-wide identification of antioxidant component biosynthetic enzymes: comprehensive analysis of ascorbic acid and tocochromanols biosynthetic genes in rice. Comput Biol Chem. 2011;35(5):261–8.

    Article  CAS  PubMed  Google Scholar 

  • Jones B, Gunnerås SA, Petersson SV, Tarkowski P, Graham N, May S, Dolezal K, Sandberg G, Ljung K. Cytokinin regulation of auxin synthesis in Arabidopsis involves a homeostatic feedback loop regulated via auxin and cytokinin signal transduction. Plant Cell. 2010;22(9):2956–69.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Joo JH, Bae YS, Lee JS. Role of auxin-induced reactive oxygen species in root gravitropism. Plant Physiol. 2001;126(3):1055–60.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Joshi-Saha A, Valon C, Leung J. A brand new START: abscisic acid perception and transduction in the guard cell. Sci Signal. 2011;4:1–13.

    Article  CAS  Google Scholar 

  • Kaiser H, Legner N. Localization of mechanisms involved in hydropassive and hydroactive stomatal responses of Sambucus nigra to dry air. Plant Physiol. 2007;143(2):1068–77.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kang Y, Shahbaz K, Xiaoyi M. Climate change impacts on crop yield, crop water productivity and food security: a review. Proc Natl Acad Sci U S A. 2009;19(12):1665–74.

    Google Scholar 

  • Kang G, Li G, Xu W, Peng X, Han Q, Zhu Y, Guo T. Proteomics reveals the effects of salicylic acid on growth and tolerance to subsequent drought stress in wheat. J Proteome Res. 2012;11(12):6066–79.

    CAS  PubMed  Google Scholar 

  • Kang GZ, Li GZ, Liu GQ, Xu W, Peng XQ, Wang CY, Zhu YJ, Guo TC. Exogenous salicylic acid enhances wheat drought tolerance by influence on the expression of genes related to ascorbate-glutathione cycle. Biologia Planta. 2013;57(4):718–24.

    Article  CAS  Google Scholar 

  • Kazan K, Manners JM. JAZ repressors and the orchestration of phytohormone cross talk. Trends Plant Sci. 2012;17(1):22–31.

    Article  CAS  PubMed  Google Scholar 

  • Kim JH, Chung KM, Woo HR. Three positive regulators of leaf senescence in Arabidopsis, ORE1, ORE3 and ORE9, play roles in cross talk among multiple hormone-mediated senescence pathways. Genes Genom. 2011;33(4):373–81.

    Article  CAS  Google Scholar 

  • Kissoudis C, van de Wiel C, Visser RG, van der Linden G. Enhancing crop resilience to combined abiotic and biotic stress through the dissection of physiological and molecular cross talk. Front Plant Sci. 2014;5(207):125. doi:10.3389/fpls.2014.00207.

    Google Scholar 

  • Kohli A, Sreenivasulu N, Lakshmanan P, Kumar PP. The phytohormone cross talk paradigm takes center stage in understanding how plants respond to abiotic stresses. Plant Cell Rep. 2013;32(7):945–57.

    Article  CAS  PubMed  Google Scholar 

  • Koprivova A, Mugford ST, Kopriva S. Arabidopsis root growth dependence on glutathione is linked to auxin transport. Plant Cell Rep. 2010;29(10):1157–67.

    Article  CAS  PubMed  Google Scholar 

  • Krouk G, Ruffel S, Gutierrez RA, Gojon A, Crawford NM, Coruzzi GM, Lacombe B. A framework integrating plant growth with hormones and nutrients. Trends Plant Sci. 2011;16(4):178–82.

    Article  CAS  PubMed  Google Scholar 

  • Kumari GJ, Reddy AM, Naik ST, Kumar SG, Prasanthi J, Sriranganayakulu G, Reddy PC, Sudhakar C. Jasmonic acid induced changes in protein pattern, antioxidative enzyme activities and peroxidase isozymes in peanut seedlings. Biologia Planta. 2006;50(2):219–26.

    Article  CAS  Google Scholar 

  • Lawlor DW. Limitation to photosynthesis in water‐stressed leaves: stomata vs. metabolism and the role of ATP. Ann Bot. 2002;89(7):871–85.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lee SC, Kim SH, An SH, Yi SY, Hwang BK. Identification and functional expression of the pepper pathogen-induced gene, CAPIP2, involved in disease resistance and drought and salt stress tolerance. Plant Mol Biol. 2006;62(1-2):151–64.

    Article  CAS  PubMed  Google Scholar 

  • León P, Sheen J. Sugar and hormone connections. Trends Plant Sci. 2003;8(3):110–6.

    Article  PubMed  CAS  Google Scholar 

  • Leon-Reyes A, van der Does D, De-Lange ES, Delker C, Wasternack C, van Wees SCM, Ritsema T, Pieterse CMJ. Salicylate-mediated suppression of jasmonate-responsive gene expression in Arabidopsis is targeted downstream of the jasmonate biosynthesis pathway. Planta. 2010;232(6):1423–32.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li J, Yang H, Peer WA, Richter G, Blakeslee J, Bandyopadhyay A, Titapiwantakun B, Undurraga S, Khodakovskaya M, Richards EL, Krizek B, Murphy AS, Gilroy S, Gaxiola R. Arabidopsis H+-PPase AVP1 regulates auxin-mediated organ development. Science. 2005;310(5745):121–5.

    Article  CAS  PubMed  Google Scholar 

  • Lim PO, Woo HR, Nam HG. Molecular genetics of leaf senescence in Arabidopsis. Trends Plant Sci. 2003;8(6):272–8.

    Article  CAS  PubMed  Google Scholar 

  • Lim PO, Kim HJ, Nam HG. Leaf senescence. Annu Rev Plant Biol. 2007;58:115–36.

    Article  CAS  PubMed  Google Scholar 

  • Lim PO, Lee IC, Kim J, Kim HJ, Ryu JS, Woo HR, Nam HG. Auxin response factor 2 (ARF2) plays a major role in regulating auxin-mediated leaf longevity. J Exp Bot. 2010. doi:10.1093/jxb/erq010.

    Google Scholar 

  • Liu X, Shi W, Zhang S, Lou C. Nitric oxide involved in signal transduction of Jasmonic acid-induced stomatal closure of Vicia faba L. Chinese Sci Bull. 2005;50(6):520–5.

    CAS  Google Scholar 

  • Ljung K, Bhalerao RP, Sandberg G. Sites and homeostatic control of auxin biosynthesis in Arabidopsis during vegetative growth. Plant J. 2001;28(4):465–74.

    Article  CAS  PubMed  Google Scholar 

  • Ljung K, Hull AK, Celenza J, Yamada M, Estelle M, Normanly J, Sandberg G. Sites and regulation of auxin biosynthesis in Arabidopsis roots. Plant Cell. 2005;17(4):1090–104.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ludwig AA, Saitoh H, Felix G, Freymark G, Miersch O, Wasternack C, Boller T, Jones JDG, Romeis T. Ethylene-mediated cross-talk between calcium-dependent protein kinase and MAPK signaling controls stress responses in plants. Proc Nat Acad Sci U S A. 2005;102(30):10736–41.

    Article  CAS  Google Scholar 

  • Lyons R, Manners JM, Kazan K. Jasmonate biosynthesis and signaling in monocots: a comparative overview. Plant Cell Rep. 2013;32(6):815–27.

    Article  CAS  PubMed  Google Scholar 

  • Mahajan S, Tuteja N. Cold, salinity and drought stresses: an overview. Arch Biochem Biophys. 2005;444(2):139–58.

    Article  CAS  PubMed  Google Scholar 

  • Malamy JE. Intrinsic and environmental response pathways that regulate root system architecture. Plant Cell Environ. 2005;28(1):67–77.

    Article  CAS  PubMed  Google Scholar 

  • Mateo A, Funck D, Mühlenbock P, Kular B, Mullineaux PM, Karpinski S. Controlled levels of salicylic acid are required for optimal photosynthesis and redox homeostasis. J Exp Bot. 2006;57(8):1795–807.

    Article  CAS  PubMed  Google Scholar 

  • Melcher K, Zhou XE, Xu HE. Thirsty plants and beyond: structural mechanisms of abscisic acid perception and signaling. Curr Opin Struct Biol. 2010;20(6):722–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Merewitz EB, Gianfagna T, Huang B. Effects of SAG12-ipt and HSP18. 2-ipt expression on cytokinin production, root growth, and leaf senescence in creeping bentgrass exposed to drought stress. J Amer Soc Hort Sci. 2010;135(3):230–9.

    Google Scholar 

  • Merewitz EB, Gianfagna T, Huang B. Protein accumulation in leaves and roots associated with improved drought tolerance in creeping bentgrass expressing an ipt gene for cytokinin synthesis. J Exp Bot. 2011. doi:10.1093/jxb/err166.

    Google Scholar 

  • Miller G, Suzuki N, Ciftci‐Yilmaz S, Mittler R. Reactive oxygen species homeostasis and signalling during drought and salinity stresses. Plant Cell Environ. 2010;33(4):453–67.

    Article  CAS  PubMed  Google Scholar 

  • Mishra BS, Singh M, Aggrawal P, Laxmi A. Glucose and auxin signaling interaction in controlling Arabidopsis thaliana seedlings root growth and development. PLoS One. 2009;4(2), e4502. doi:10.1371/journal.pone.0004502.

    Article  PubMed  PubMed Central  Google Scholar 

  • Mittler R. Oxidative stress, antioxidants and stress tolerance. Trends Plant Sci. 2002;7(9):405–10.

    Article  CAS  PubMed  Google Scholar 

  • Miura K, Okamoto H, Okuma E, Shiba H, Kamada H, Hasegawa PM, Murata Y. SIZ1 deficiency causes reduced stomatal aperture and enhanced drought tolerance via controlling salicylic acid‐induced accumulation of reactive oxygen species in Arabidopsis. Plant J. 2013;73(1):91–104.

    Article  CAS  PubMed  Google Scholar 

  • Moore B, Zhou L, Rolland F, Hall Q, Cheng W-H, Liu Y-X, Hwang I, Jones T, Sheen J. Role of the Arabidopsis glucose sensor HXK1 in nutrient, light, and hormonal signaling. Science. 2003;300(5617):332–6.

    Article  CAS  PubMed  Google Scholar 

  • Muller B, Pantin F, Génard M, Turc O, Freixes S, Piques M, Gibon Y. Water deficits uncouple growth from photosynthesis, increase C content, and modify the relationships between C and growth in sink organs. J Exp Bot. 2011;62(6):1715–29.

    Article  CAS  PubMed  Google Scholar 

  • Munemasa S, Oda K, Watanabe-Sugimoto M, Nakamura Y, Shimoishi Y, Murata Y. The coronatine-insensitive 1 mutation reveals the hormonal signaling interaction between abscisic acid and methyl jasmonate in Arabidopsis guard cells. Specific impairment of ion channel activation and second messenger production. Plant Physiol. 2007;143(3):1398–407.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Munné-Bosch S, Alegre L. Changes in carotenoids, tocopherols and diterpenes during drought and recovery, and the biological significance of chlorophyll loss in Rosmarinus officinalis plants. Planta. 2000;210(6):925–31.

    Article  PubMed  Google Scholar 

  • Munné-Bosch S, Alegre L. Die and let live: leaf senescence contributes to plant survival under drought stress. Funct Plant Biol. 2004;31(3):203–16.

    Article  Google Scholar 

  • Murata Y, Mori IC. Stomatal regulation of plant water status. In: Jenks MA, Hasegawa PM, editors. Plant abiotic stress. 2nd ed. Ames, IO: John Wiley and Sons; 2014. p. 47–67.

    Chapter  Google Scholar 

  • Nakagami H, Pitzschke A, Hirt H. Emerging MAP kinase pathways in plant stress signalling. Trends Plant Sci. 2005;10(7):339–46.

    Article  CAS  PubMed  Google Scholar 

  • Nakashima K, Ito Y, Yamaguchi-Shinozaki K. Transcriptional regulatory networks in response to abiotic stresses in Arabidopsis and grasses. Plant Physiol. 2009;149(1):88–95.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Navarro L, Bari R, Achard P, Lisón P, Nemri A, Harberd NP, Jones JD. DELLAs control plant immune responses by modulating the balance of jasmonic acid and salicylic acid signaling. Curr Biol. 2008;18(9):650–5.

    Article  CAS  PubMed  Google Scholar 

  • Nemhauser JL, Hong F, Chory J. Different plant hormones regulate similar processes through largely nonoverlapping transcriptional responses. Cell. 2006;126(3):467–75.

    Article  CAS  PubMed  Google Scholar 

  • Nilson SE, Assmann SM. The control of transpiration. Insights from Arabidopsis. Plant Physiol. 2007;143(1):19–27.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nishiyama R, Watanabe Y, Fujita Y, Le DT, Kojima M, Werner T, Vankova R, Yamaguchi-Shinozaki K, Shinozaki K, Kakimoto T, Sakakibara H, Schmülling T, Tran L-SP. Analysis of cytokinin mutants and regulation of cytokinin metabolic genes reveals important regulatory roles of cytokinins in drought, salt and abscisic acid responses, and abscisic acid biosynthesis. Plant Cell. 2011;23(6):2169–83.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Olszewski N, Sun TP, Gubler F. Gibberellin signaling biosynthesis, catabolism, and response pathways. Plant Cell. 2002;14(1):61–80.

    Google Scholar 

  • Pandey S, Gupta K, Mukherjee AK. Impact of cadmium and lead on Catharanthus roseus-A phytoremediation study. J Environ Biol. 2007;28(3):655–62.

    CAS  PubMed  Google Scholar 

  • Park JM, Park C-J, Lee S-B, Ham B-K, Shin R, Paek K-H. Overexpression of the tobacco Tsi1 gene encoding an EREBP/AP2–type transcription factor enhances resistance against pathogen attack and osmotic stress in tobacco. Plant Cell. 2001;13(5):1035–46.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Park S, Li J, Pittman JK, Berkowitz GA, Yang H, Undurraga S, Morris J, Hirschi KD, Gaxiola RA. Up-regulation of a H+-pyrophosphatase (H+-PPase) as a strategy to engineer drought-resistant crop plants. Proc Nat Acad Sci U S A. 2005;102(52):18830–5.

    Article  CAS  Google Scholar 

  • Pauwels L, Inzé D, Goossens A. Jasmonate-inducible gene: what does it mean? Trends Plant Sci. 2009;14(2):87–91.

    Article  CAS  PubMed  Google Scholar 

  • Peleg Z, Blumwald E. Hormone balance and abiotic stress tolerance in crop plants. Curr Opin Plant Biol. 2011;14(3):290–5.

    Article  CAS  PubMed  Google Scholar 

  • Pinheiro C, Chaves MM. Photosynthesis and drought: can we make metabolic connections from available data? J Exp Bot. 2011;62(3):869–82.

    Article  CAS  PubMed  Google Scholar 

  • Poorter H, Nagel O. The role of biomass allocation in the growth response of plants to different levels of light, CO2, nutrients and water: a quantitative review. Aust J Plant Physiol. 2000;27:595–607.

    Article  CAS  Google Scholar 

  • Pospíšilová J. Participation of phytohormones in the stomatal regulation of gas exchange during water stress. Biologia Planta. 2003;46(4):491–506.

    Article  Google Scholar 

  • Prochazkova D, Sairam RK, Srivastava GC, Singh DV. Oxidative stress and antioxidant activity as the basis of senescence in maize leaves. Plant Sci. 2001;161(4):765–71.

    Article  CAS  Google Scholar 

  • Puranik S, Sahu PP, Srivastava PS, Prasad M. NAC proteins: regulation and role in stress tolerance. Trends Plant Sci. 2012;17(6):369–81.

    Article  CAS  PubMed  Google Scholar 

  • Qiu Y, Yu D. Over-expression of the stress-induced OsWRKY45 enhances disease resistance and drought tolerance in Arabidopsis. Environ Exp Bot. 2009;65(1):35–47.

    Article  CAS  Google Scholar 

  • Raghavendra AS, Gonugunta VK, Christmann A, Grill E. ABA perception and signalling. Trends Plant Sci. 2010;15(7):395–401.

    Article  CAS  PubMed  Google Scholar 

  • Ramamoorthy R, Jiang SY, Kumar N, Venkatesh PN, Ramachandran S. A comprehensive transcriptional profiling of the WRKY gene family in rice under various abiotic and phytohormone treatments. Plant Cell Physiol. 2008;49(6):865–79.

    Article  CAS  PubMed  Google Scholar 

  • Ranwala AP, Miller WB. Preventive mechanisms of gibberellin 4 + 7 and light on low-temperature-induced leaf senescence in Lilium cv. Stargazer. Postharvest Biol Tech. 2000;19(1):85–92.

    Article  CAS  Google Scholar 

  • Reddy AR, Kolluru VC, Munusamy V. Drought-induced responses of photosynthesis and antioxidant metabolism in higher plants. J Plant Physiol. 2004;161(11):1189–202.

    Article  CAS  Google Scholar 

  • Ren X, Zhizhong C, Yue L, Hairong Z, Min Z, Qian L, Xuhui H, Zhu J-K, Zhizhong G. ABO3, a WRKY transcription factor, mediates plant responses to abscisic acid and drought tolerance in Arabidopsis. Plant J. 2010;63(3):417–29.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ribeiro DM, Araújo WL, Fernie AR, Schippers JH, Mueller-Roeber B. Translatome and metabolome effects triggered by gibberellins during rosette growth in Arabidopsis. J Exp Bot. 2012. doi:10.1093/jxb/err463.

    PubMed  PubMed Central  Google Scholar 

  • Richards DE, King KE, Ait-ali T, Harberd NP. How gibberellin regulates plant growth and development: a molecular genetic analysis of gibberellin signaling. Annu Rev Plant Physiol Plant Mol Biol. 2001;52(1):67–88.

    Article  CAS  PubMed  Google Scholar 

  • Rivero RM, Kojima M, Gepstein A, Sakakibara H, Mittler R, Gepstein S, Blumwald E. Delayed leaf senescence induces extreme drought tolerance in a flowering plant. Proc Natl Acad Sci U S A. 2007;104(49):19631–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Robert-Seilaniantz A, Murray G, Jones JDG. Hormone cross talk in plant disease and defense: more than just jasmonate-salicylate antagonism. Annu Rev Plant Physiol Plant Mol Biol. 2011;49:317–43.

    CAS  Google Scholar 

  • Rosenvasser S, Mayak S, Friedman H. Increase in reactive oxygen species (ROS) and in senescence-associated gene transcript (SAG) levels during dark-induced senescence of Pelargonium cuttings, and the effect of gibberellic acid. Plant Sci. 2006;170(4):873–9.

    Article  CAS  Google Scholar 

  • Rossato L, Laine P, Ourry A. Nitrogen storage and remobilization in Brassica napus L. during the growth cycle: nitrogen fluxes within the plant and changes in soluble protein patterns. J Exp Bot. 2001;52(361):1655–63.

    Google Scholar 

  • Ruiz KB, Biondi S, Oses R, Acuña-Rodríguez IS, Antognoni F, Martinez-Mosqueira EA, Coulibaly A, Canahua-Murillo A, Pinto M, Zurita-Silva A, Bazile D, Jacobsen S-E, Molina-Montenegro MA. Quinoa biodiversity and sustainability for food security under climate change: a review. Agron Sustain Dev. 2014;34(2):349–59.

    Article  Google Scholar 

  • Saibo NJ, Vriezen WH, Beemster GT, van Der Straeten D. Growth and stomata development of Arabidopsis hypocotyls are controlled by gibberellins and modulated by ethylene and auxins. Plant J. 2003;33(6):989–1000.

    Article  CAS  PubMed  Google Scholar 

  • Santino A, Taurino M, De-Domenico S, Bonsegna S, Poltronieri P, Pastor V, Flors V. Jasmonate signaling in plant development and defense response to multiple (a)biotic stresses. Plant Cell Rep. 2013;32(7):1085–98.

    Article  CAS  PubMed  Google Scholar 

  • Schenk PM, Kazan K, Wilson I, Anderson JP, Richmond T, Somerville SC, Manners JM. Coordinated plant defense responses in Arabidopsis revealed by microarray analysis. Proc Natl Acad Sci U S A. 2000;97(21):11655–60.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schippers JH, Jing HC, Hille J, Dijkwel PP. Developmental and hormonal control of leaf senescence. In: Gan S, editor. Senescence processes in plants. Oxford: Blackwell Publishing; 2007. p. 145–70.

    Chapter  Google Scholar 

  • Schroeder JI, Nambara E. A quick release mechanism for abscisic acid. Cell. 2006;126(6):1023–5.

    Article  CAS  PubMed  Google Scholar 

  • Schwartz SH, Qin X, Zeevaart JA. Elucidation of the indirect pathway of abscisic acid biosynthesis by mutants, genes, and enzymes. Plant Physiol. 2003;131(4):1591–601.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schwechheimer C, Willige BC. Shedding light on gibberellic acid signalling. Curr Opin Plant Biol. 2009;12(1):57–62.

    Article  CAS  PubMed  Google Scholar 

  • Sedghi M, Sharifi RS, Pirzad AR, Amanpour-Balaneji B. Phytohormonal regulation of antioxidant systems in petals of drought stressed pot marigold (Calendula officinalis L.). J Agric Sci Tech. 2012;14(4):869–78.

    Google Scholar 

  • Senaratna T, Touchell D, Bunn E, Dixon K. Acetyl salicylic acid (Aspirin) and salicylic acid induce multiple stress tolerance in bean and tomato plants. Plant Growth Regul. 2000;30(2):157–61.

    Article  CAS  Google Scholar 

  • Shan C, Liang Z. Jasmonic acid regulates ascorbate and glutathione metabolism in Agropyron cristatum leaves under water stress. Plant Sci. 2010;178(2):130–9.

    Article  CAS  Google Scholar 

  • Sharma R, De-Vleesschauwer D, Sharma MK, Ronald PC. Recent advances in dissecting stress-regulatory cross talk in rice. Mol Plant. 2013;6(2):250–60.

    Article  CAS  PubMed  Google Scholar 

  • Sharp RE. Interaction with ethylene: changing views on the role of abscisic acid in root and shoot growth responses to water stress. Plant Cell Environ. 2002;25(2):211–22.

    Article  CAS  PubMed  Google Scholar 

  • Sharp RE, LeNoble ME. ABA, ethylene and the control of shoot and root growth under water stress. J Exp Bot. 2002;53(366):33–7.

    Article  CAS  PubMed  Google Scholar 

  • Shi H, Chen L, Ye T, Liu X, Ding K, Chan Z. Modulation of auxin content in Arabidopsis confers improved drought stress resistance. Plant Physiol Biochem. 2014;82:209–17.

    Article  CAS  PubMed  Google Scholar 

  • Shoji K, Addicott FT, Swets WA. Auxin in relation to leaf blade abscission. Plant Physiol. 1951;26(1):189–91.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Singh B, Usha K. Salicylic acid induced physiological and biochemical changes in wheat seedlings under water stress. Plant Growth Regul. 2003;39(2):137–41.

    Article  CAS  Google Scholar 

  • Sirichandra C, Wasilewska A, Vlad F, Valon C, Leung J. The guard cell as a single-cell model towards understanding drought tolerance and abscisic acid action. J Exp Bot. 2009;60(5):1439–63.

    Article  CAS  PubMed  Google Scholar 

  • Smékalová V, Doskočilová A, Komis G, Šamaj J. Cross talk between secondary messengers, hormones and MAPK modules during abiotic stress signalling in plants. Biotech Adv. 2014;32(1):2–11.

    Article  CAS  Google Scholar 

  • Smirnoff N. Tansley Review No. 52. The role of active oxygen in the response of plants to water deficit and desiccation. New Phytol. 1993;12:27–58.

    Article  Google Scholar 

  • Solomon S, Qin D, Manning M, Marquis M, Averyt K, Tignor M. IPCC: climate change 2007: the physical science basis. In: Miller HL, Chen Z, editors. Contribution of working groups I, II, and III to the fourth assessment report of the intergovernmental panel on climate change. Cambridge, UK: Cambridge University Press; 2007.

    Google Scholar 

  • Song XG, She XP, He JM, Huang C, Song TS. Cytokinin-and auxin-induced stomatal opening involves a decrease in levels of hydrogen peroxide in guard cells of Vicia faba. Funct Plant Biol. 2006;33(6):573–83.

    Article  CAS  Google Scholar 

  • Sridha S, Wu K. Identification of AtHD2C as a novel regulator of abscisic acid responses in Arabidopsis. Plant J. 2006;46(1):124–33.

    Article  CAS  PubMed  Google Scholar 

  • Stepanova AN, Alonso JM. Ethylene signaling and response: where different regulatory modules meet. Curr Opin Plant Biol. 2009;12(5):548–55.

    Article  CAS  PubMed  Google Scholar 

  • Suhita D, Raghavendra AS, Kwak JM, Vavasseur A. Cytoplasmic alkalization precedes reactive oxygen species production during methyl jasmonate-and abscisic acid-induced stomatal closure. Plant Physiol. 2004;134(4):1536–45.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sun TP, Gubler F. Molecular mechanism of gibberellin signaling in plants. Annu Rev Plant Biol. 2004;55:197–223.

    Article  CAS  PubMed  Google Scholar 

  • Sun J, Xu Y, Ye S, Jiang H, Chen Q, Liu F, Zhou W, Chen R, Li X, Tietz O, Wu X, Cohen JD, Palme K, Li C. Arabidopsis ASA1 is important for jasmonate-mediated regulation of auxin biosynthesis and transport during lateral root formation. Plant Cell. 2009;21(5):1495–511.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Taiz L, Zeiger E. Plant physiology. 5th ed. Sunderland, MA: Sinauer Associates; 2010.

    Google Scholar 

  • Tanaka Y, Sano T, Tamaoki M, Nakajima N, Kondo N, Hasezawa S. Cytokinin and auxin inhibit abscisic acid-induced stomatal closure by enhancing ethylene production in Arabidopsis. J Exp Bot. 2006;57(10):2259–66.

    Article  CAS  PubMed  Google Scholar 

  • Tester M, Bacic A. Abiotic stress tolerance in grasses. From model plants to crop plants. Plant Physiol. 2005;137(3):791–3.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • To JP, Kieber JJ. Cytokinin signaling: two-components and more. Trends Plant Sci. 2008;13(2):85–92.

    Article  CAS  PubMed  Google Scholar 

  • Todaka D, Nakashima K, Maruyama K, Kidokoro S, Osakabe Y, Ito Y, Matsukura S, Fujita Y, Yoshiwara K, Ohme-Takagi M, Kojima M, Sakakibara H, Shinozaki K, Yamaguchi-Shinozaki K. Rice phytochrome-interacting factor-like protein OsPIL1 functions as a key regulator of internode elongation and induces a morphological response to drought stress. Proc Natl Acad Sci U S A. 2012;109(39):15947–52.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tognetti VB, Mühlenbock PER, van Breusegem F. Stress homeostasis-the redox and auxin perspective. Plant Cell Environ. 2012;35(2):321–33.

    Article  CAS  PubMed  Google Scholar 

  • Tran LSP, Urao T, Qin F, Maruyama K, Kakimoto T, Shinozaki K, Yamaguchi-Shinozaki K. Functional analysis of AHK1/ATHK1 and cytokinin receptor histidine kinases in response to abscisic acid, drought, and salt stress in Arabidopsis. Proc Natl Acad Sci U S A. 2007;104(51):20623–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Trewavas AJ, Jones HG. An assessment of the role of ABA in plant development. In: Davies WJ, Jones HG, editors. Abscisic acid: physiology and biochemistry. Oxford: Bio Scientific Publishers pp; 1991. p. 169–88.

    Google Scholar 

  • Trujillo LE, Sotolongo M, Menendez C, Ochogavia ME, Coll Y, Hernandez I, Borras-Hidalgo O, Thomma BPHJ, Vera P, Hernandez L. SodERF3, a novel sugarcane ethylene responsive factor (ERF), enhances salt and drought tolerance when overexpressed in tobacco plants. Plant Cell Physiol. 2008;49(4):512–25.

    Article  CAS  PubMed  Google Scholar 

  • van der Graaff E, Schwacke R, Schneider A, Desimone M, Flügge UI, Kunze R. Transcription analysis of Arabidopsis membrane transporters and hormone pathways during developmental and induced leaf senescence. Plant Physiol. 2006;141(2):776–92.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Vandenbussche F, Van Der Straeten D. One for all and all for one: cross-talk of multiple signals controlling the plant phenotype. J Plant Growth Regul. 2007;26(2):178–87.

    Article  CAS  Google Scholar 

  • Vanlerberghe GC. Alternative oxidase: a mitochondrial respiratory pathway to maintain metabolic and signaling homeostasis during abiotic and biotic stress in plants. Int J Mol Sci. 2013;14(4):6805–47.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Vanstraelen M, Benková E. Hormonal interactions in the regulation of plant development. Ann Rev Cell Dev Biol. 2012;28:463–87.

    Article  CAS  Google Scholar 

  • Wan L, Zhang J, Zhang H, Zhang Z, Quan R, Zhou S, Huang R. Transcriptional activation of OsDERF1 in OsERF3 and OsAP2-39 negatively modulates ethylene synthesis and drought tolerance in rice. PLoS One. 2011;6(9), e25216. doi:10.1371/journal.pone.0025216.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang GX, Zhang J, Liao JX, Wang JL. Hydropassive evidence and effective factors in stomatal oscillations of Glycyrrhiza inflata under desert conditions. Plant Sci. 2001;160(5):1007–13.

    Article  CAS  PubMed  Google Scholar 

  • Wang RS, Pandey S, Li S, Gookin TE, Zhao Z, Albert R, Assmann SM. Common and unique elements of the ABA-regulated transcriptome of Arabidopsis guard cells. BMC Genomics. 2011;12(1):216–40.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang Y, Wan L, Zhang L, Zhang Z, Zhang H, Quan R, Zhou S, Huang R. An ethylene response factor OsWR1 responsive to drought stress transcriptionally activates wax synthesis related genes and increases wax production in rice. Plant Mol Biol. 2012;78(3):275–88.

    Article  CAS  PubMed  Google Scholar 

  • Wasternack C. Jasmonates: an update on biosynthesis, signal transduction and action in plant stress response, growth and development. Ann Bot. 2007;100(4):681–97.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Werner T, Motyka V, Laucou V, Smets R, Van Onckelen H, Schmülling T. Cytokinin-deficient transgenic Arabidopsis plants show multiple developmental alterations indicating opposite functions of cytokinins in the regulation of shoot and root meristem activity. Plant Cell. 2003;15(11):2532–50.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Werner T, Nehnevajova E, Köllmer I, Novák O, Strnad M, Krämer U, Schmülling T. Root-specific reduction of cytokinin causes enhanced root growth, drought tolerance, and leaf mineral enrichment in Arabidopsis and tobacco. Plant Cell. 2010;22(12):3905–20.

    Article  PubMed  PubMed Central  Google Scholar 

  • Wilkinson S, Davies WJ. ABA‐based chemical signalling: the co‐ordination of responses to stress in plants. Plant Cell Environ. 2002;25(2):195–210.

    Article  CAS  PubMed  Google Scholar 

  • Wilkinson S, Davies WJ. Drought, ozone, ABA and ethylene: new insights from cell to plant to community. Plant Cell Environ. 2010;33(4):510–25.

    Article  CAS  PubMed  Google Scholar 

  • Wilkinson S, Kudoyarova GR, Veselov DS, Arkhipova TN, Davies WJ. Plant hormone interactions: innovative targets for crop breeding and management. J Exp Bot. 2012;63(9):3499–509.

    Article  CAS  PubMed  Google Scholar 

  • Wolters H, Jürgens G. Survival of the flexible: hormonal growth control and adaptation in plant development. Nat Rev Genet. 2009;10(5):305–17.

    Article  CAS  PubMed  Google Scholar 

  • Wu L, Zhang Z, Zhang H, Wang XC, Huang R. Transcriptional modulation of ethylene response factor protein JERF3 in the oxidative stress response enhances tolerance of tobacco seedlings to salt, drought, and freezing. Plant Physiol. 2008;148(4):1953–63.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wu X, Kishitani S, Ito Y, Toriyama K. Accumulation of raffinose in rice seedlings overexpressing OsWRKY11 in relation to desiccation tolerance. Plant Biotechnol. 2009;26(4):431–4.

    Article  CAS  Google Scholar 

  • Wu H, Wu X, Li Z, Duan L, Zhang M. Physiological evaluation of drought stress tolerance and recovery in cauliflower (Brassica oleracea L.) seedlings treated with methyl jasmonate and coronatine. J Plant Growth Regul. 2012;31(1):113–23.

    Google Scholar 

  • Xiao‐Ping S, Xi‐Gui S. Cytokinin‐and auxin‐induced stomatal opening is related to the change of nitric oxide levels in guard cells in broad bean. Physiologia Planta. 2006;128(3):569–79.

    Article  CAS  Google Scholar 

  • Xu W, Jia L, Shi W, Liang J, Zhou F, Li Q, Zhang J. Abscisic acid accumulation modulates auxin transport in the root tip to enhance proton secretion for maintaining root growth under moderate water stress. New Phytol. 2013;197(1):139–50.

    Article  CAS  PubMed  Google Scholar 

  • Xu Q, Burgess P, Huang B (2016) Stress-inhibition and gibberellin-mitigation of leaf elongation associated with up-regulation of genes controlling cell expansion. Physiologia Planta.

    Google Scholar 

  • Yamaguchi S. Gibberellin metabolism and its regulation. Annu Rev Plant Biol. 2008;59:225–51.

    Article  CAS  PubMed  Google Scholar 

  • Yanagisawa S, Yoo SD, Sheen J. Differential regulation of EIN3 stability by glucose and ethylene signalling in plants. Nature. 2003;425(6957):521–5.

    Article  CAS  PubMed  Google Scholar 

  • Yang KY, Liu Y, Zhang S. Activation of a mitogen-activated protein kinase pathway is involved in disease resistance in tobacco. Proc Natl Acad Sci U S A. 2001a;98(2):741–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yang J, Zhang J, Wang Z, Zhu Q, Liu L. Water deficit–induced senescence and its relationship to the remobilization of pre-stored carbon in wheat during grain filling. Agron J. 2001b;93(1):196–206.

    Article  CAS  Google Scholar 

  • Yang JC, Zhang JH, Wang ZQ, Zhu QS, Liu LJ. Involvement of abscisic acid and cytokinins in the senescence and remobilization of carbon reserves in wheat subjected to water stress during grain filling. Plant Cell Environ. 2003;26(10):1621–31.

    Article  CAS  Google Scholar 

  • Yang X, Yang YN, Xue LJ, Zou MJ, Liu JY, Chen F, Xue HW. Rice ABI5-Like1 regulates abscisic acid and auxin responses by affecting the expression of ABRE-containing genes. Plant Physiol. 2011;156(3):1397–409.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yordanov I, Velikova V, Tsonev T. Plant responses to drought, acclimation, and stress tolerance. Photosynthetica. 2000;38(2):171–86.

    Article  CAS  Google Scholar 

  • Yu K, Wei J, Ma Q, Yu D, Li J. Senescence of aerial parts is impeded by exogenous gibberellic acid in herbaceous perennial Paris polyphylla. J Plant Physiol. 2009;166(8):819–30.

    Article  CAS  PubMed  Google Scholar 

  • Yuan S, Lin HH. Minireview: Role of Salicylic Acid in Plant Abiotic Stress. Zeitschrift für Naturforschung C. 2008;63(5-6):313–20.

    Article  CAS  Google Scholar 

  • Yuan K, Rashotte AM, Wysocka-Diller JW. ABA and GA signaling pathways interact and regulate seed germination and seedling development under salt stress. Acta Physiologiae Planta. 2011;33(2):261–71.

    Article  CAS  Google Scholar 

  • Zawaski C, Busov VB. Roles of gibberellin catabolism and signaling in growth and physiological response to drought and short-day photoperiods in Populus trees. PLoS One. 2014;9(1):1–12.

    Article  CAS  Google Scholar 

  • Zhang S, Liu Y. Activation of salicylic acid–induced protein kinase, a mitogen-activated protein kinase, induces multiple defense responses in tobacco. Plant Cell. 2001;13(8):1877–89.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang X, Schmidt RE. Antioxidant response to hormone-containing product in Kentucky bluegrass subjected to drought. Crop Sci. 1999;39(2):545–51.

    Article  CAS  Google Scholar 

  • Zhang X, Schmidt RE. Hormone-containing products’ impact on antioxidant status of tall fescue and creeping bentgrass subjected to drought. Crop Sci. 2000;40(5):1344–9.

    Article  CAS  Google Scholar 

  • Zhang X, Ervin EH, Schmidt RE. Physiological effects of liquid applications of a seaweed extract and a humic acid on creeping bentgrass. J Amer Soc Hort Sci. 2003;128(4):492–6.

    Google Scholar 

  • Zhang J, Jia W, Yang J, Ismail AM. Role of ABA in integrating plant responses to drought and salt stresses. Field Crops Res. 2006;97(1):111–9.

    Article  Google Scholar 

  • Zhang X, Ervin EH, Evanylo GK, Haering K. Drought assessment of auxin-boosted biosolids. Proc Water Environ Federation. 2007;2007(3):150–65.

    Article  Google Scholar 

  • Zhang H, Wu L, Wan L, Li F, Dai L, Li D, Zhang Z, Huang R. Functional analyses of ethylene response factor JERF3 with the aim of improving tolerance to drought and osmotic stress in transgenic rice. Transgenic Res. 2010a;19(5):809–18.

    Article  CAS  PubMed  Google Scholar 

  • Zhang Z, Li F, Li D, Zhang H, Huang R. Expression of ethylene response factor JERF1 in rice improves tolerance to drought. Planta. 2010b;232(3):765–74.

    Article  CAS  PubMed  Google Scholar 

  • Zhu JK. Salt and drought stress signal transduction in plants. Ann. Rev. Plant Biol. 2002;53:247–73.

    Article  CAS  Google Scholar 

  • Zottini M, Costa A, De-Michele R, Ruzzene M, Carimi F, Schiavo FL. Salicylic acid activates nitric oxide synthesis in Arabidopsis. J Exp Bot. 2007;58(6):1397–405.

    Article  CAS  PubMed  Google Scholar 

  • Zwart SJ, Bastiaanssen WGM. Review of measured crop water productivity values for irrigated wheat, rice, cotton and maize. Agric Water Manage. 2004;69(2):115–33.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bingru Huang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Burgess, P., Huang, B. (2016). Mechanisms of Hormone Regulation for Drought Tolerance in Plants. In: Hossain, M., Wani, S., Bhattacharjee, S., Burritt, D., Tran, LS. (eds) Drought Stress Tolerance in Plants, Vol 1. Springer, Cham. https://doi.org/10.1007/978-3-319-28899-4_3

Download citation

Publish with us

Policies and ethics