Skip to main content

Comparative Studies on Optical Biosensors for Detection of Bio-Toxins

  • Chapter
  • First Online:
Biosensors for Security and Bioterrorism Applications

Abstract

A number of optical bio-sensing methods were reviewed with their principles and main characteristics outlined. The advantages and disadvantages of optical methods were discussed in a view of their application in detection of bio-toxins. A case study presented the comparative analysis of results in detection of mycotoxins obtained with the method of total internal reflection ellipsometry. The future prospects of optical biosensing technologies were discussed with the main focus on development of portable and highly sensitive biosensors suitable for in-field analysis.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Lequin R M (2005) Enzyme Immunoassay (EIA)/Enzyme-Linked Immunosorbent Assay (ELISA). Clin Chem 51(12):2415–2418

    Article  Google Scholar 

  2. Rao Y J (1999) Recent progress in applications in fibre Bragg grating sensors. Opt Lasers Eng 31:297–324

    Article  Google Scholar 

  3. James S W, Tatam R P (2003) Optical fibre long-period grating sensors: characteristics and application. Meas Sci Technol 14:R49–R61

    Article  ADS  Google Scholar 

  4. Nabok A (2005) Organic and inorganic nanostructures. Artech House, Boston

    Google Scholar 

  5. Brockman J M, Nelson B P, Corn R M (2000) Surface plasmon imaging of ultrathin organic films. Ann Rev Phys Chem 51:41–63

    Article  ADS  Google Scholar 

  6. Azzam R M A, Bashara N M (1992) Ellipsometry and polarized light. North Holland, Amsterdam

    Google Scholar 

  7. Westphal P, Bornmann A (2002) Biomolecular detection by surface plasmon enhanced ellipsometry. Sens Actuators B 84:278–282

    Article  Google Scholar 

  8. Arwin H, Poksinski M, Johansen K (2004) Total internal reflection ellipsometry: principles and applications. Appl Opt 43:3028–3036

    Article  ADS  Google Scholar 

  9. Nabok A, Tsargorodskaya A, Hassan A K, Starodub N F (2005) Total internal reflection ellipsometry and SPR detection of low molecular weight environmental toxins. Appl Surf Sci 246(4):381–386

    Article  ADS  Google Scholar 

  10. Nabok A, Tsargorodskaya A, Holloway A, Starodub N F, Gojster O (2007) Registration of T-2 mycotoxin with total internal reflection ellipsometry and QCM impedance methods. Biosens Bioelectron 22(6):885–890

    Article  Google Scholar 

  11. Nabok A, Tsargorodskaya A (2008) The method of total internal reflection ellipsometry for thin film characterisation and sensing. Thin Solid Films 516(24):8993–9001

    Article  ADS  Google Scholar 

  12. Nabok A, Tsargorodskaya A, Mustafa M K, Szekacs I, Starodub N F, Szekacs A (2011) Detection of low molecular weight toxins using optical phase detection techniques. Sens Actuators B Chem 154(2):232–237

    Article  Google Scholar 

  13. Nabok A, Mustafa M K, Tsargorodskaya A, Starodub N F (2011) Detection of aflatoxin B1 with a label free ellipsometry immunosensor. BioNanoScience 1(1):38–45

    Article  Google Scholar 

  14. Székács A, Adányi N, Székács I, Majer-Baranyi K, Szendrő I (2009) Optical waveguide lightmode spectroscopy immunosensors for environmental monitoring. Appl Opt 48:B151–B158

    Article  ADS  Google Scholar 

  15. Voros J, Ramsden J J, Gsucs G, Szendro I, De Paul S M, Textor M, Spenser N D (2002) Optical grating couple biosensor. Biomaterials 23:3699–3710

    Article  Google Scholar 

  16. Voros J (2004) The density and refractive index od adsorbing protein layers. Biophys J 87:553–561

    Article  Google Scholar 

  17. Label-free immunosensor for herbicide trifluralin detection, OWLS Application notes No-002, http://www.OWLS-sensors.com

  18. Label-free immunosensor for Aflatoxin B1, OWLS Application notes No-006. http://www.OWLS-sensors.com

  19. Cross G, Reeves A A, Brand S, Popplewell J F, Peel L L, Swann M J, Freeman N J (2003) A new quantitative optical biosensor for protein characterisation. Biosens Bioelectron 19(4):383–390

    Article  Google Scholar 

  20. Cross G, Reeves A A, Brand S, Swann M J, Peel L L, Freeman N J, Lu J R (2004) The metrics of surface adsorbed small molecules on the Yung’s fringe dual-slab waveguide interferometer. J Phys D Appl Phys 37:74–80

    Article  ADS  Google Scholar 

  21. Luff B J, Wikinson J S, Piehler J, Hollenbach U, Ingenhoff J, Fabricius N (1998) Integrated optical Mach-Zehnder biosensor. J Lightwave Technol 16(4):583–592

    Article  ADS  Google Scholar 

  22. Sun Y, Fan X (2011) Optical ring resonators for biochemical and chemical sensing. Anal Bioanal Chem 399:205–211

    Article  Google Scholar 

  23. Misiakos K, Kakabakos S E, Petrou P S, Ruf H H (2004) A monolithic silicon optoelectronic transducer as a real-time affinity biosensor. Anal Chem 76:1366–1373

    Article  Google Scholar 

  24. Kitsara M, Misiakos K, Raptis I, Makarona E (2010) Integrated optical frequency-resolved Mach-Zehnder interferometers for label-free affinity sensing. Opt Express 18:8193–8206

    Article  ADS  Google Scholar 

  25. Misiakos K, Raptis I, Makarona E, Botsialas A, Salapatas A, Oikonomou P, Psarouli A, Petrou PS, Kakabakos SE, Tukkiniemi K, Sopanen M, Jobst G (2014) All silicon monolithic Mach-Zehnder interferometer as a refractive index and bio-chemical sensor. Opt Express 22(22):26803–26813

    Article  ADS  Google Scholar 

  26. Mie G (1908) Beitge zur optic trüber medien, speziell kolloidaler metallösungen. Ann Phys 330(3):377–445

    Article  MATH  Google Scholar 

  27. Hong Y, Huh Y-M, Yoon D S, Yang J (2012) Nanobiosensors based on localized surface plasmon resonance for biomarker detection, Hindawi Publishing Co. J Nanomater 759830. doi:10.1155/2012/759830

    Google Scholar 

  28. Zhao J, Zhang X, Yonzon C R, Haes A J, Van Duyne R P (2006) Localized surface plasmon resonance biosensors. Nanomedicine 1(2):1029–1034

    Article  Google Scholar 

  29. Lee K-S, El-Sayed M (2005) Dependence of the enhanced optical scattering efficiency relative to that of absorption for gold metal nanorods on aspect ratio, size, and- cup shape, and medium refractive index. J Phys Chem 109(43):20331–20338

    Article  Google Scholar 

  30. Vaskevich A, Rubistein I (2013) Nanoplasmonic sensors. Springer, Integrated Analytical System, pp 333–368

    Google Scholar 

  31. Jonsson M P, Dahlin A B, Jonsson P, Hook F (2008) Nanoplasmonic biosensing with focus on short-range ordered nanoholes in thin metal films. Biointerphases. J Biomater Biol Interphases 3:FD30. doi:10.1116/1.3027483

    Google Scholar 

  32. Tsargorodska A, El Zubir O, Darroch B, Cartron M L, Basova T, Hunter C N, Nabok A V, Leggett G J (2014) Fast, simple, combinatorial routes to the fabrication of reusable, plasmonically active gold nanostructures by interferometric lithography of self- assembled monolayers. ACS Nano 8(8):7858–7869

    Google Scholar 

  33. Jensen T R, Duval M L, Kelly K L, Lazarides A A, Schatz G C, Van Duyne R P (1999) Single nanosphere lithography: effect of external dielectric medium on the surface plasmon resonance spectrum of a periodic array of silver nanoparticles. J Phys Chem B 103(45):9846–9853

    Google Scholar 

  34. Karakouz T, Holder D, Goomanovsky M, Vaskevich A, Rubinstein I (2009) Morphology and refractive index sensitivity of gold island films. Chem Mater 21:5875–5885

    Article  Google Scholar 

  35. Gans R (1912) Ann Phys (Weinheim, Ger.) 103:9846

    Google Scholar 

  36. Petryaeva E, Krull U J (2011) Localized surface plasmon resonance: nanostructures, bioassays and siosensing—a review. Anal Chim Acta 706:8–24

    Article  Google Scholar 

  37. Larkin P J (2005) IR and Raman Spectroscopy. Jones and Bartlett Publishers Inc, Burlington

    Google Scholar 

  38. Aouani H, Rahmani M, Šípová H, Torres V, Hegnerová K, Beruete M, Homola J, Hong M, Navarro-Cía M, Maier S A (2013) Plasmonic nanoantennas for multispectral surface-enhanced spectroscopies. J Phys Chem C 117:18620–18626

    Article  Google Scholar 

  39. Nabok A, Tsargorodskaya A, Holloway A, Starodub NF, Demchenko A (2007) Specific binding of large aggregates of amphiphilic molecules to respective antibodies. Langmuir 23(16):8485–8490

    Article  Google Scholar 

  40. Lishchuk S, Tsargorodskaya A, Nabok A (2008) The model of alkylphenol micelles bound to respective antibodies on the solid surface. Colloids Surf A 324:117–121

    Article  Google Scholar 

  41. Al-Ammar R, Nabok A, Hashim A, Smith T (2015) Microcystin-LR produced by bacterialalgae: Optical detection and purification of contaminated substances. Sens Actuators B Chem 209:1070–1076

    Article  Google Scholar 

  42. Starodub N F, Nabok A V, Starodub V M, Ray A K, Hassan A K (2001) Immobilisation of biocomponents for immune optical sensors. Ukrainian Bio Chem J 73:55–64

    Google Scholar 

Download references

Acknowledgment

This work was financially supported by NATO project, SPS(NUKR.SFPP 984637).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alexei Nabok .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Nabok, A. (2016). Comparative Studies on Optical Biosensors for Detection of Bio-Toxins. In: Nikolelis, D., Nikoleli, GP. (eds) Biosensors for Security and Bioterrorism Applications. Advanced Sciences and Technologies for Security Applications. Springer, Cham. https://doi.org/10.1007/978-3-319-28926-7_23

Download citation

Publish with us

Policies and ethics