Skip to main content

Phylogenetic Diversity of Fungi in the Sea including the Opisthosporidia

  • Chapter
Biology of Microfungi

Part of the book series: Fungal Biology ((FUNGBIO))

  • 2382 Accesses

Abstract

With the advancement of molecular techniques in the last two decades, cultures of marine fungi have been sequenced, and several new lineages of marine fungi have been revealed, suggesting multiple evolution of fungi into the marine environment. High-throughput sequencing has also allowed discovery of unculturable marine fungi, such as the Cryptomycota. Traditionally, marine fungi are known to belong mostly to the Ascomycota and asexual morphs with few basidiomycetes and chytrids. In this chapter, we will introduce the phylogenetic diversity of these groups with the emphasis on the ascomycetous classes Dothideomycetes and Sordariomycetes, where most marine ascomycetes are referred to. We will also summarize the current knowledge on the marine taxa at the basal lineages of fungi including the phyla Aphelida, Cryptomycota, and Microsporidia, currently classified in the superphylum Opisthosporidia.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abdel-Wahab MA, Bahkali AHA (2012) Taxonomy of filamentous anamorphic marine fungi: morphology and molecular evidence. In: Jones EBG, Pang KL (eds) Marine fungi and fungal-like organisms. De Gruyter, Berlin, pp 65–90

    Google Scholar 

  • Abdel-Wahab MA, Pang KL, Nagahama T, Abdel-Aziz FA, Jones EBG (2010) Phylogenetic evaluation of anamorphic species of Cirrenalia and Cumulospora with the description of eight new genera and four new species. Mycol Prog 9:537–558

    Google Scholar 

  • Alexopoulos CJ, Mims CW, Blackwell M (1996) Introductory mycology. Wiley, New York

    Google Scholar 

  • Arfi Y, Buée M, Marchand C, Levasseur A, Record E (2012) Multiple markers pyrosequencing reveals highly diverse and host-specific fungal communities on the mangrove trees Avicennia marina and Rhizophora stylosa. FEMS Microbiol Ecol 79:433–444

    Article  PubMed  Google Scholar 

  • Ariyawana HA, Tanaka K, Thambugala KM, Phookamsak R, Tian Q, Camporesi E et al (2014) A molecular phylogenetic reappraisal of the Didymosphaeriaceae (= Montagnulaceae). Fungal Divers. doi:10.1007/s13225-014-0305-6

    Google Scholar 

  • Ariyawansa HA, Jones EBG, Suetrong S, Alias SA, Kang JC, Hyde KD (2013) Halojulellaceae a new family of the order Pleosporales. Phytotaxa 130:14–24

    Article  Google Scholar 

  • Barghoorn ES, Linder DH (1944) Marine fungi: their taxonomy and biology. Farlowia 1:395–467

    Google Scholar 

  • Berbee ML (2001) The phylogeny of plant and animal pathogens in the Ascomycota. Physiol Mol Plant Pathol 59:165–187

    Article  CAS  Google Scholar 

  • Bills GF, Platas G, Peelaez F, Masurekar P (1999) Reclassification of a pneumocandin producing anamorph, Glarea lozoyensis gen. et sp. nov., previously identified as Zalerion arboricola. Mycol Res 103:179–192

    Article  CAS  Google Scholar 

  • Binder M, Hibbett DS, Wang Z, Farnham WF (2006) Evolutionary relationships of Mycaureola dilseae (Agaricales), a basidiomycetes pathogen of a subtidal Rhodophyte. Am J Bot 93:547–556

    Article  PubMed  Google Scholar 

  • Blackwell M (2011) The fungi: 1, 2, 3 … 5.1 million species? Am J Bot 98:426–438

    Article  PubMed  Google Scholar 

  • Boonmee S, Ko TWK, Chukeatirote E, Hyde KD, Chen H, Cai L, McKenzie EHC, Jones EBG, Kodsueb R, Hassan BA (2012) Two new Kirschsteiniothelia species with Dendryphiopsis anamorphs cluster in Kirschsteiniotheliaceae fam. nov. Mycologia 104:698–714

    Article  PubMed  Google Scholar 

  • Boonyuen N, Chuaseeharonnachai C, Suetrong S, Sri-indrasutdhi V, Sivichai S, Jones EBG, Pang KL (2011) Savoryellales (Hypocreomycetidae, Sordariomycetes): a novel lineage of aquatic ascomycetes inferred from multiple-gene phylogenies of the genera Ascotaiwania, Ascothailandia, and Savoryella. Mycologia 103:1351–1371

    Article  PubMed  Google Scholar 

  • Borse BD (1987) Marine fungi from India—V. Curr Sci 56:1109–1111

    Google Scholar 

  • Brown AMV, Adamson ML (2006) Phylogenetic distance of Thelohania butleri Johnston, Vernick, and Sprague, 1978 (Microsporidia; Thelohaniidae), a parasite of the smooth pink shrimp Pandalus jordani, from its congeners suggests need for major revision of the genus Thelohania Henneguy, 1892. J Eukaryot Microbiol 53:445–455

    Article  CAS  PubMed  Google Scholar 

  • Bubnova EN (2010) Fungal diversity in bottom sediments of the Kara Sea. Bot Mar 53:595–600

    Article  Google Scholar 

  • Campbell J, Volkmann-Kohlmeyer B, Gräfenhan T, Spataofora JW, Kohlmeyer J (2005) A reevaluation of Lulworthiales: relationships based on 18S and 28S rDNA. Mycol Res 109:556–568

    Article  CAS  PubMed  Google Scholar 

  • Campbell J, Inderbitzin P, Kohlmeyer J, Volkmann-Kohlmeyer B (2009) Koralionastetales, a new order of marine Ascomycota in the Sordariomycetes. Mycol Res 113:373–380

    Article  CAS  PubMed  Google Scholar 

  • Chalkley DB, Suh SO, Volkmann-Kohlmeyer B, Kohlmeyer J, Zhou JJ (2010) Diatrypasimilis australiensis, a novel xylarialean fungus from mangrove. Mycologia 102:430–437

    Article  CAS  PubMed  Google Scholar 

  • Dawson SC, Pace NR (2002) Novel kingdom level eukaryotic diversity in anoxic environments. Proc Natl Acad Sci USA 99:8324–8329

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Diederich P, Ertz D, Lawrey JD, Sikaroodi M, Untereiner WA (2013) Molecular data place the hyphomycetous lichenicolous genus Sclerococcum close to Dactylospora (Eurotiomycetes) and S. parmeliae in Cladophialophora (Chaetothyriales). Fungal Divers 58:61–72

    Article  Google Scholar 

  • Dunn AM, Terry RS, Smith JE (2001) Transovarial transmission in the microsporidia. Adv Parasitol 48:57–100

    Article  CAS  PubMed  Google Scholar 

  • El-Sharouny HM, Raheem AM, Abdel-Wahab MA (1998) Manglicolous fungi of the Red Sea in upper Egypt. Microbiol Res 153:81–96

    Article  Google Scholar 

  • Fell JW, Statzell-Tallman A, Scorzetti G, Gutiérrez MH (2011) Five new species of yeasts from freshwater and marine habitats in the Florida Everglades. Anton Leeuw 99:533–549

    Article  Google Scholar 

  • Gleason FH, Küpper FC, Glockling SL (2012) Zoosporic true fungi. In: Jones EBG, Pang KL (eds) Marine fungi and fungal-like organisms. De Gruyter, Berlin, pp 103–116

    Google Scholar 

  • Gleason FH, Lilje O, Marano AV, Sime-Ngando T, Sullivan BK, Kirchmair M, Neuhauser S (2014) Ecological functions of zoosporic hyperparasites. Front Microbiol 5:244. doi:10.3389/fmicb.2014.00244

    PubMed  PubMed Central  Google Scholar 

  • Glockling SL, Jones MDM, Gleason FH (2012) Cryptomycota (Rozellida) and Mesomycetozoea (Ichthyosporea) the super-group Opisthokonta. In: Jones EBG, Pang KL (eds) Marine fungi and fungal-like organisms. De Gruyter, Berlin, pp 153–165

    Google Scholar 

  • Hambleton S, Sigler L (2005) Meliniomyces, a new anamorph for root-associated fungi with phylogenetic affinities to Rhizoscyphus ericae (=Hymenoscyphus ericae), Leotiomycetes. Stud Mycol 53:1–27

    Article  Google Scholar 

  • Hatai K (2012) Disease of fish and shellfish caused by marine fungi. In: Raghukumar S (ed) Biology of marine fungi. Springer, Berlin, pp 15–52

    Chapter  Google Scholar 

  • Hibbett DS, Binder M (2001) Evolution of marine mushrooms. Biol Bull 201:319–322

    Article  CAS  PubMed  Google Scholar 

  • Holler U, Wright AD, Matthee GF, Konig GM, Draeger S, Aust HJ, Schulz B (2000) Fungi from marine sponges: diversity, biological activity and secondary metabolites. Mycol Res 104:1354–1365

    Article  CAS  Google Scholar 

  • Hyde KD (1992) Julella avivenniae (Borse) comb. nov. (Thelenellaceae) from intertidal mangrove wood and miscellaneous fungi from the North East Coast of Queensland. Mycol Res 95:939–942

    Article  Google Scholar 

  • Hyde KD, Jones EBG, Liu JK, Ariyawansha H, Boehm E, Boonmee S et al (2013) Families of Dothideomycetes. Fungal Divers 63:1–313

    Article  Google Scholar 

  • Inderbitzin P, Kohlmeyer J, Volkmann-Kohlmeyer B, Berbee ML (2002) Decorospora, a new genus for the marine ascomycetes Pleospora gaudefroyi. Mycologia 91:651–659

    Article  Google Scholar 

  • Inderbitzin P, Lim SR, Volkmann-Kohlmeyer B, Kohlmeyer J (2004) The phylogenetic position of Spathulospora based on DNA sequences from dried herbarium material. Mycol Res 108:737–748

    Article  CAS  PubMed  Google Scholar 

  • James TY, Berbee ML (2012) No jacket required—new fungal lineage defies dress code. Bioessays 34:94–102

    Article  CAS  PubMed  Google Scholar 

  • Johnson TW Jr (1966) Rozella marina in Chytridium polysiphoniae from Icelandic water. Mycologia 58:490–494

    Article  Google Scholar 

  • Johnson TW, Sparrow FK (1961) Fungi in oceans and estuaries. J. Cramer, Germany

    Google Scholar 

  • Jones EBG (1994) Fungal adhesion. Mycol Res 98:961–981

    Article  Google Scholar 

  • Jones EBG (1995) Ultrastructure and taxonomy of the aquatic ascomycetous order Halosphaeriales. Can J Bot 73:S790–S801

    Article  Google Scholar 

  • Jones EBG (2000) Marine fungi: some factors influencing biodiversity. Fungal Divers 4:53–73

    Google Scholar 

  • Jones EBG (2006) Form and function of fungal spore appendages. Mycoscience 47:167–183

    Article  CAS  Google Scholar 

  • Jones EBG (2011) Are there more marine fungi to be described? Bot Mar 54:343–354

    Article  Google Scholar 

  • Jones EBG, Hyde KD (1992) Taxonomic studies on Savoryella Jones et Eaton (Ascomycotina). Bot Mar 35:83–91

    Google Scholar 

  • Jones EBG, Moss ST (1978) Ascospore appendages of marine ascomycetes: an evaluation of appendages as taxonomic criteria. Mar Biol 49:11–26

    Article  Google Scholar 

  • Jones EBG, Pang KL (2012) Introduction of marine fungi. In: Jones EBG, Pang KL (eds) Marine fungi and fungal-like organisms. De Gruyter, Berlin, pp 1–13

    Chapter  Google Scholar 

  • Jones EBG, Sakayaroj J, Suetrong S, Somrithipol S, Pang KL (2009a) Classification of marine Ascomycota, anamorphic taxa and Basidiomycota. Fungal Divers 35:1–187

    Google Scholar 

  • Jones EBG, Zuccaro A, Mitchell JI, Nakagiri A, Chatmala I, Pang KL (2009b) Phylogenetic position of freshwater and marine Sigmoidea species: introducing a marine hyphomycete Halosigmoidea gen. nov. (Halosphaeriales). Bot Mar 52:349–359

    Article  CAS  Google Scholar 

  • Jones MDM, Forn I, Gadelha C, Egan MJ, Bass D, Massana R, Richards TA (2011a) Discovery of novel intermediate forms redefines the fungal tree of life. Nature 474:200–205

    Article  CAS  PubMed  Google Scholar 

  • Jones MDM, Richards TA, Hawksworth DL, Bass D (2011b) Validation and justification of the phylum name Cryptomycota phyl. Nov. IMA Fungus 2:173–175

    Article  PubMed  PubMed Central  Google Scholar 

  • Jones EBG, Hyde KD, Pang KL, Suetrong S (2012a) Phylogeny of the Dothideomycetes and other classes of marine Ascomycota. In: Jones EBG, Pang KL (eds) Marine fungi and fungal-like organisms. De Gruyter, Berlin, pp 17–34

    Chapter  Google Scholar 

  • Jones SRM, Prosperi-Porta G, Kim E (2012b) The diversity of microsporidia in parasitic copepods (Caligidae: Siphonostomatoida) in the northeast Pacific Ocean with description of Facilispora margolisi n. g., n. sp. and a new family Facilisporidae n. fam. J Eukaryot Microbiol 59:206–217

    Article  CAS  PubMed  Google Scholar 

  • Jones EBG, Suetrong S, Rungjindamai N, Somrithipol S, Sakayaroj J, Abdel-Wahab MA, Pang KL (2014) An additional fungal lineage in the Hypocreomycetidae (Falcocladium species) and the taxonomic re-evaluation of Chaetosphaeria chaetosa and Swampomyces species, based on morphology, ecology and phylogeny. Cryptogam Mycol 35:119–138

    Article  Google Scholar 

  • Jones EBG, Suetrong S, Sakayaroj J, Bahkali AH, Abdel-Wahab MA, Boekhout T, Pang KL (2015) Classification of marine Ascomycota, Basidiomycota, Blastocladiomycota and Chytridiomycota. Fungal Divers [In Submission]3:1–72

    Google Scholar 

  • Karpov SA, Mamkaeva MA, Aleoshin VV, Nassonova E, Lilje O, Gleason FH (2014a) Morphology, phylogeny, and ecology of the aphelids (Aphelidea, Opisthokonta) and proposal for the new superphylum Opisthosporidia. Front Microbiol. doi:10.3389/fmicb.2014.00112

    PubMed  PubMed Central  Google Scholar 

  • Karpov SA, Mamkaeva MA, Benzerara K, Moreira D, Lopez-Garcia P (2014b) Molecular phylogeny and ultrastructure of Aphelidium aff. Melosirae (Aphelida, Opisthosporidia). Protist 165:512–526

    Article  PubMed  PubMed Central  Google Scholar 

  • Kearney R, Gleason FH (2014) Microsporidia. In: Jones EBG, Hyde KD, Pang KL (eds) Freshwater fungi and fungal-like organisms. De Gruyter, Berlin, pp 157–176

    Google Scholar 

  • Khudyakova YV, Pivkin MV, Kuznetsova TA, Svetashev VI (2000) Fungi in sediments of the sea of Japan and their biologically active metabolites. Microbiology 69:608–611

    Article  CAS  Google Scholar 

  • Klaysuban A, Sakayaroj J, Jones EBG (2014) An additional marine fungal lineage in the Diatrypaceae, Xylariales: Pedumispora rhizophorae. Bot Mar 57:413–420

    Article  Google Scholar 

  • Koch J, Pang KL, Jones EBG (2007) Rostrupiella anica gen. et sp. nov., a Lulworthia-like marine lignicolous species from Denmark and the USA. Bot Mar 50:294–301

    Article  CAS  Google Scholar 

  • Kohlmeyer J, Kohlmeyer E (1971) Marine fungi from tropical America and Africa. Mycologia 63:831–861

    Article  CAS  PubMed  Google Scholar 

  • Kohlmeyer J, Kohlmeyer E (1975) Biology and geographical distribution of Spathulospora species. Mycologia 67:629–637

    Article  Google Scholar 

  • Kohlmeyer J, Kohlmeyer E (1979) Marine mycology–the higher fungi. Academic, New York

    Google Scholar 

  • Kohlmeyer J, Volkmann-Kohlmeyer B (1987) Marine fungi from Belize with a description of two new genera of Ascomycetes. Bot Mar 30:195–204

    Article  Google Scholar 

  • Kohlmeyer J, Volkmannn-Kohlmeyer B (2003) Marine Ascomycetes from algae and animal hosts. Bot Mar 46:285–306

    Article  Google Scholar 

  • Kohlmeyer J, Spatafora JW, Volkmann-Kohlmeyer B (2000) Lulworthiales, a new order of marine Ascomycota. Mycologia 92:453–458

    Article  Google Scholar 

  • Kutty SN, Philip R (2008) Marine yeasts—a review. Yeast 25:465–483

    Article  CAS  PubMed  Google Scholar 

  • Landvik S (1996) Neolecta, a fruit-body-producing genus of the basal ascomycetes, as shown by SSU and LSU rDNA sequences. Mycol Res 100:199–202

    Article  CAS  Google Scholar 

  • Lara E, Moreira D, Lopez-Garcia P (2010) The environmental clade LKM11 and Rozella form the deepest branching clade of fungi. Protist 161:116–121

    Article  CAS  PubMed  Google Scholar 

  • Lichtwardt RW (2012) Trichomycete gut fungi from tropical regions of the world. Biodivers Conserv 21:2397–2402

    Article  Google Scholar 

  • Livermore JA, Mattes TE (2013) Phylogenetic detection of novel Cryptomycota in an Iowa (United States) aquifer and from previously collected marine and freshwater targeted high-throughput sequencing sets. Environ Microbiol 15:2333–2341

    Article  CAS  PubMed  Google Scholar 

  • Luo ZH, Pang KL (2014) Fungi from substrates in marine environment. In: Misra JK, Tewari JP, Deshmukh SK, Vágvölgyi C (eds) Fungi from different substrates. CRC Press, London

    Google Scholar 

  • Mantle PG, Hawksworth DL, Pazoutova S, Collinson LM, Rassing BR (2006) Amorosia littorlais gen. et sp. nov., a new genus and species name for the scorpinone and caffeineproducing hyphomycetes from the littoral zone in The Bahamas. Mycol Res 110:1371–1378

    Article  CAS  PubMed  Google Scholar 

  • Matthews CGG, Richards RH, Shinn AP, Cox DI (2013) Gill pathology in Scottish farmed Atlantic salmon, Salmo salar L., associated with the microsporidian Desmozoon lepeophtherii Freeman et Sommerville, 2009. J Fish Dis 36:861–869

    CAS  PubMed  Google Scholar 

  • Meyers SP (1957) Taxonomy of marine Pyrenomycetes. Mycologia 49:475–528

    Article  Google Scholar 

  • Mouzouras R, Jones EBG (1985) Monodictys pelagica, the anamorph of Nereiospora cristata (Halosphaeriaceae). Can J Bot 63:2444–2447

    Article  Google Scholar 

  • Nagahama T, Hamamoto M, Nakase T, Takaki Y, Horikoshi K (2003) Cryptococcus surugaensis sp. nov., a novel yeast species from sediment collected on the deep-sea floor of Suruga Bay. Int J Syst Evol Microbiol 53:2095–2098

    Article  CAS  PubMed  Google Scholar 

  • Nagahama T, Takahashi E, Nagano Y, Abdel-Wahab MA, Miyazaki M (2011) Molecular evidence that deep-branching fungi are major fungal components in deep-sea methane cold-seep sediments. Environ Microbiol 13:2359–2370

    Article  CAS  PubMed  Google Scholar 

  • Nagano Y, Nagahama T, Hatada Y, Nunoura T, Takami H, Miyazaki J, Takai K, Horikoshi K (2010) Fungal diversity in deep-sea sediments-the presence of novel fungal groups. Fungal Ecol 3:316–325

    Article  Google Scholar 

  • Pang KL (2002) Systematics of the Halosphaeriales: which morphological characters are important? In: Hyde KD (ed) Fungi in marine environments. Fungal Diversity Press, Hong Kong, pp 35–57

    Google Scholar 

  • Pang KL, Vrijmoed LLP, Kong RYC, Jones EBG (2003) Polyphyly of Halosarpheia (Halosphaeriales, Ascomycota): implications on the use of unfurling ascospore appendage as a systematic character. Nova Hedwig 77:1–18

    Article  Google Scholar 

  • Pang KL, Alias SA, Chiang MWL, Vrijmoed LLP, Jones EBG (2010) Sedecimiella taiwanensis gen. et sp. nov., a marine mangrove fungus in the Hypocreales (Hypocreomycetidae, Ascomycota). Bot Mar 53:493–498

    Google Scholar 

  • Pang KL, Guo SY, Alias SA, Hafellner J, Jones EBG (2014) A new species of marine Dactylospora and its phylogenetic affinities within the Eurotiomycetes, Ascomycota. Bot Mar 57:315–321

    Article  Google Scholar 

  • Passarini MRZ, Santos C, Lima N, Berlinck RGS, Sette LD (2013) Filamentous fungi from the Atlantic marine sponge Dragmacidon reticulatum. Arch Microbiol 195:99–111

    Article  CAS  PubMed  Google Scholar 

  • Pinnoi A, Phongpaichit P, Jeewon R, Tang AMC, Hyde KD, Jones EBG (2010) Phylogenetic relationships of Astrocystis eleiodoxae sp. nov. (Xylariaceae). Mycosphere 1:1–9

    Google Scholar 

  • Rämä T, Norden J, Davey ML, Mathiassen GH, Spatafora JW, Kauserud H (2014) Fungi ahoy! Diversity on marine wooden substrata in the high North. Fungal Ecol 8:46–58

    Article  Google Scholar 

  • Read SJ, Jones EBG, Moss ST (1993) Taxonomic studies of marine Ascomycotina: ultrastructure of the asci, ascospores, and appendages of Savoryella species. Can J Bot 71:273–283

    Article  Google Scholar 

  • Rossman AY, McKemy JM, Pardo-Schultheiss RA, Schroers HJ (2001) Molecular studies of the Bionectriaceae using large subunit rDNA sequences. Mycologia 93:100–110

    Article  CAS  Google Scholar 

  • Sakayaroj J, Pang KL, Jones EBG, Vrijmoed LLP, Abdel-Wahab MA (2005) A systematic reassessment of marine ascomycetes Swampomyces and Torpedospora. Bot Mar 48:395–406

    Article  Google Scholar 

  • Sakayaroj J, Pang KL, Jones EBG (2011) Multi-gene phylogeny of the Halosphaeriaceae: its ordinal status, relationships between genera and morphological character evolution. Fungal Divers 46:87–109

    Article  Google Scholar 

  • Sapir A, Dillman AR, Connon SA, Grupe BM, Ingels J, Mundo-Ocampo M et al (2014) Microsporidia-nematode associations in methane seeps reveal basal fungal parasitism in the deep sea. Front Microbiol 5:43. doi:10.3389/fmicb.2014.00043

    PubMed  PubMed Central  Google Scholar 

  • Schoch CL, Sung GH, Volkmann-Kohlmeyer B, Kohlmeyer J, Spatafora JW (2006) Marine fungal lineages in the Hypocreomycetidae. Mycol Res 110:257–263

    Article  CAS  PubMed  Google Scholar 

  • Schoch CL, Sung GH, López-Giráldez F, Townsend JP, Miadlikowska J, Hofstetter V et al (2009) The Ascomycota tree of life: a phylum-wide phylogeny clarifies the origin and evolution of fundamental reproductive and ecological traits. Syst Biol 58:224–239

    Article  CAS  PubMed  Google Scholar 

  • Schultz M, Büdel B (2003) On the systematic position of the lichen genus Heppia. Lichenologist 35:151–156

    Article  Google Scholar 

  • Shearer CA (1986) The significance of teleomorph/anamorph connections in the classification of marine Ascomycota. In: Moss ST (ed) The biology of marine fungi. Cambridge University Press, Cambridge, pp 253–262

    Google Scholar 

  • Shearer CA, Descals E, Kohlmeyer B, Kohlmeyer J, Marvanová L, Padgett D et al (2007) Fungal biodiversity in aquatic habitats. Biodivers Conserv 16:49–67

    Article  Google Scholar 

  • Smith GJD, Liew ECY, Hyde KD (2003) The Xylariales: a monophyletic order containing 7 families. Fungal Divers 13:175–208

    Google Scholar 

  • Sparrow FK Jr (1936) Biological observation on the marine fungi of Woods Hole Waters. Biol Bull 70:236–263

    Article  Google Scholar 

  • Spatafora JW, Blackwell M (1994) The polyphyletic origins of ophiostomatoid fungi. Mycol Res 98:1–9

    Article  Google Scholar 

  • Spatafora JW, Volkmann-Kohlmeyer B, Kohlmeyer J (1998) Independent terrestrial origins of the Halosphaeriales (marine Ascomycota). Am J Bot 85:1569–1580

    Article  CAS  PubMed  Google Scholar 

  • Statzell-Tallman A, Scorzetti G, Fell JW (2010) Candida spencermartinsiae sp. nov., Candida taylorii sp. nov. and Pseudozyma abaconensis sp. nov., novel yeasts from mangrove and coral reef ecosystems. Int J Syst Evol Microbiol 60:1978–1984

    Article  CAS  PubMed  Google Scholar 

  • Stentiford GD, Bateman KS, Small HJ, Moss J, Shields JD, Reece KS, Tuck I (2010) Myospora metanephrops (n. g., n. sp.) from marine lobsters and a proposal for erection of a new order and family (Crustaceacida; Myosporidae) in the class Marinosporidia (Phylum Microsporidia). Int J Parasitol 40:1433–1446

    Article  CAS  PubMed  Google Scholar 

  • Stentiford GD, Feist SW, Stone DM, Bateman KS, Dunn AM (2013) Microsporidia: diverse, dynamic, and emergent pathogens in aquatic systems. Trends Parasitol 29:567–578

    Article  PubMed  Google Scholar 

  • Stentiford GD, Bateman K, Feist SW, Oyarzun S, Uribe JC, Palacios M, Stone DM (2014) Areospora rohanae n.gen. n.sp. (Microsporidia; Areosporiidae n. fam.) elicits multi-nucleate giant-cell formation in southern king crab (Lithodes santolla). J Invertebr Pathol 118:1–11

    Article  CAS  PubMed  Google Scholar 

  • Suetrong S, Schoch CL, Spatafora JW, Kohlmeyer J, Volkmann-Kohlmeyer B, Sakayaroj J, Phongpaichit S, Tanaka K, Hirayama K, Jones EBG (2009) Molecular systematics of the marine Dothideomycetes. Stud Mycol 64:155–173

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Suetrong S, Sakayaroj S, Phongpaichit S, Jones EBG (2010) Morphological and molecular characteristics of a poorly known marine ascomycete, Manglicola guatemalensis (Jahnulales: Pezizomycotina; Dothideomycetes, Incertae sedis): new lineage of marine ascomycetes. Mycologia 102:83–92

    Article  PubMed  Google Scholar 

  • Swe A, Li J, Zhang KQ, Pointing SB, Jeewon R, Hyde KD (2011) Nematode-Trapping fungi. Curr Res Environ Appl Mycol 1:1–26

    Google Scholar 

  • van Hannen EJ, Mooij WM, van Agterveld MP, Gons HJ et al (1999) Detritus-dependent development of the microbial community in an experimental system: qualitative analysis by denaturing gradient gel electrophoresis. Appl Environ Microbiol 65:2478–2484

    PubMed  PubMed Central  Google Scholar 

  • Vijaykrishna D, Jeewon R, Hyde KD (2006) Molecular taxonomy, origins and evolution of freshwater ascomycetes. Fungal Divers 23:351–390

    Google Scholar 

  • Vossbrinck CR, Debrunner-Vossbrinck BA (2005) Molecular phylogeny of the Microsporidia: ecological, ultrastructural and taxonomic considerations. Folia Parasitol 52:131–142

    Article  CAS  PubMed  Google Scholar 

  • Vrijmoed LLP, Hyde KD, Jones EBG (1996) Melaspilea mangrovei sp. nov., from Australia and Hong Kong mangroves. Mycol Res 100:291–294

    Article  Google Scholar 

  • Zhang Y, Schoch CL, Fournier J, Crous PW, de Gruyter J, Woudenberg JHC, Hirayama K, Tanaka K, Pointing SB, Spatafora JW, Hyde KD (2009a) Multi-locus phylogeny of Pleosporales: a taxonomic, ecological and evolutionary re-evaluation. Stud Mycol 64:85–102

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang Y, Crous PW, Schoch CL, Hyde KD (2009b) Pleosporales. Fungal Divers 53:1–221

    Article  Google Scholar 

  • Zhang XY, Bao J, Wang GH, He F, Xu XY, Qi SH (2012) Diversity and antimicrobial activity of culturable fungi isolated from six species of the South China Sea gorgonians. Microb Ecol 64:617–627

    Article  CAS  PubMed  Google Scholar 

  • Zuccaro A, Schulz B, Mitchell JI (2003) Molecular detection of ascomycetes associated with Fucus serratus. Mycol Res 107:1451–1466

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

K.L. Pang would like to thank the Ministry of Science and Technology, Taiwan, for financial support (NSC101-2621-B-019-001-MY3).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ka-Lai Pang Ph.D. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Pang, KL., Jones, E.B.G. (2016). Phylogenetic Diversity of Fungi in the Sea including the Opisthosporidia . In: Li, DW. (eds) Biology of Microfungi. Fungal Biology. Springer, Cham. https://doi.org/10.1007/978-3-319-29137-6_12

Download citation

Publish with us

Policies and ethics