Skip to main content

Coralline Algae as Recorders of Past Climatic and Environmental Conditions

  • Chapter
  • First Online:
Rhodolith/Maërl Beds: A Global Perspective

Part of the book series: Coastal Research Library ((COASTALRL,volume 15))

Abstract

Calcifying marine organisms can be used as recorders, or proxies, of past environmental conditions if they lock physical or chemical signals within their skeletal material. Coralline algae lay down regular growth bands and the study of their structure and composition has gained increasing attention as a technique for reconstructing past environments in tropical, temperate and polar regions. Structurally, growth band width and percentage calcification have been used as records of historic light availability (e.g. due to cloud cover and sea ice extent). The chemical composition of their high Mg calcite skeleton has received significantly more attention, being used to reconstruct temperature, salinity, dissolved inorganic carbon, upwelling patterns and wider climate indices. At the ecosystem level, such reconstructions have been used to shed light on the drivers of past changes in marine productivity. Against a backdrop of projected ocean acidification coralline algae show significant potential for reconstructing historic changes in ocean acidification-driven marine carbonate chemistry. Due to their global distribution, coralline algae are becoming a regularly used tool for understanding environmental and ecosystem change, particularly in areas where other proxies are not available or instrumental records are sparse.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Alexandersson T (1974) Carbonate cementation in coralline algal nodules in Skagerrak, North-Sea – biochemical precipitation in undersaturated waters. J Sediment Petrol 44:7–26

    Google Scholar 

  • Blake C, Maggs CA (2003) Comparative growth rates and internal banding periodicity of maerl species (Corallinales, Rhodophyta) from northern Europe. Phycologia 42:606–612

    Article  Google Scholar 

  • Borremans C, Hermans J, Baillon S et al (2009) Salinity effects on the Mg/Ca and Sr/Ca in starfish skeletons and the echinoderm relevance for paleoenvironmental reconstructions. Geology 37:351–354

    Article  Google Scholar 

  • Bosence D (1976) Ecological studies on two unattached coralline algae from western Ireland. Palaeontology 19:365–395

    Google Scholar 

  • Bosence DWJ (1983) The occurrence and ecology of recent rhodoliths-a review. In: Peryt TM (ed) Coated grains. Springer, Berlin

    Google Scholar 

  • Budenbender J, Riebesell U, Form A (2011) Calcification of the Arctic coralline red algae Lithothamnion glaciale in response to elevated CO2. Mar Ecol Prog Ser 441:79–87

    Article  Google Scholar 

  • Burdett HL (2013) DMSP dynamics in coralline algal habitats. PhD thesis, School of Geographical and Earth Sciences. University of Glasgow, Glasgow, 300 pp

    Google Scholar 

  • Burdett HL, Kamenos NA, Law A (2011) Using coralline algae to understand historic marine cloud cover. Palaeogeogr Palaeoclimatol Palaeoecol 302:65–70

    Article  Google Scholar 

  • Burdett HL, Aloisio E, Calosi P et al (2012) The effect of chronic and acute low pH on the intracellular DMSP production and epithelial cell morphology of red coralline algae. Mar Biol Res 8:756–763

    Article  Google Scholar 

  • Caldeira K, Wickett ME (2005) Ocean model predictions of chemistry changes from carbon dioxide emissions to the atmosphere and ocean. J Geophys Res Oceans 110: C09S04. doi:10.1029/2004jc002671

  • Caragnano A, Basso D, Jacob DE et al (2014) The coralline red alga Lithophyllum kotschyanum f. affine as proxy of climate variability in the Yemen coast, Gulf of Aden (NW Indian Ocean). Geochim Cosmochim Acta 124:1–17

    Article  Google Scholar 

  • Chan P, Halfar J, Williams B et al (2011) Freshening of the Alaska coastal current recorded by coralline algal Ba/Ca ratios. J Geophys Res Biogeosci 116:G01032

    Article  Google Scholar 

  • Chave KE (1954) Aspects of biogeochemistry of magnesium. 1: calcareous marine organisms. J Geol 62:266–283

    Article  Google Scholar 

  • Chave KE (1984) The physics and chemistry of biomineralisation. Annu Rev Earth Planet Sci 112:293–305

    Article  Google Scholar 

  • Chave KE, Wheeler BD (1965) Mineralogic changes during growth in red algae, Clathromorphum compactum. Science 147:621

    Article  Google Scholar 

  • Cohen AL, Layne G, Hart S et al (2001) Kinetic control of skeletal Sr/Ca in a symbiotic coral: implications for the paleotemperature proxy. Paleoceanography 16:20–26

    Article  Google Scholar 

  • Darrenougue N (2013) Rhodoliths as environmental archives in the tropics. The Australian National University, Canberra, 244 pp

    Google Scholar 

  • Darrenougue N, De Deckker P, Payri C et al (2013) Growth and chronology of the rhodolith-forming, coralline red alga Sporolithon durum. Mar Ecol Prog Ser 474:105–119

    Article  Google Scholar 

  • De’ath G, Lough JM, Fabricius KE (2009) Declining coral calcification on the great barrier reef. Science 323:116–119

    Article  Google Scholar 

  • Delaney ML, Be AWH, Boyle EA (1985) Li, Sr, Mg, and Na in foraminiferal calcite shells from laboratory culture, sediment traps, and sediment cores. Geochim Cosmochim Acta 49:1327–1341

    Article  Google Scholar 

  • Dissard D, Nehrke G, Reichart GJ et al (2010) The impact of salinity on the Mg/Ca and Sr/Ca ratio in the benthic foraminifera Ammonia tepida: results from culture experiments. Geochim Cosmochim Acta 74:928–940

    Article  Google Scholar 

  • Elderfield H, Ganssen G (2000) Past temperature and delta O-18 of surface ocean waters inferred from for aminiferal Mg/Ca ratios. Nature 405:442–445

    Article  Google Scholar 

  • Fietzke J, Ragazzola F, Halfar J, Dietze H, Foster LC, Hansteen TH, Eisenhauer A, Steneck RS (2015) Century-scale trends and seasonality in pH and temperature for shallow zones of the Bering Sea. Proc Natl Acad Sci USA 112:2960–2965

    Google Scholar 

  • Foster MS (2001) Rhodoliths: between rocks and soft places. J Phycol 37:659–667

    Article  Google Scholar 

  • Frantz BR, Kashgarian M, Coale KH et al (2000) Growth rate and potential climate record from a rhodolith using C-14 accelerator mass spectrometry. Limnol Oceanogr 45:1773–1777

    Article  Google Scholar 

  • Frantz BR, Foster MS, Riosmena-Rodríguez R (2005) Clathromorphum nereostratum (Corallinales, Rhodophyta): the oldest alga? J Phycol 41:770–773

    Article  Google Scholar 

  • Freiwald A, Henrich R (1994) Reefal coralline algal build-ups within the Arctic circle: morphology and sedimentary dynamics under extreme environmental seasonality. Sedimentology 41:963–984

    Article  Google Scholar 

  • Fritts HC (1991) Reconstructing large-scale climatic patterns from tree-ring analysis. The University of Arizona Press, Tuscon

    Google Scholar 

  • Gamboa G, Halfar J, Hetzinger S et al (2010) Mg/Ca ratios in coralline algae record northwest Atlantic temperature variations and North Atlantic Oscillation relationships. J Geophys Res Oceans 115:C12044

    Article  Google Scholar 

  • Halfar J, Zack T, Kronz A et al (2000) Growth and high-resolution paleoenvironmental signals of rhodoliths (coralline red algae): a new biogenic archive. J Geophys Res Oceans 105:22107–22116

    Article  Google Scholar 

  • Halfar J, Steneck R, Schöne B et al (2007) Coralline alga reveals first marine record of subarctic North Pacific climate change. Geophys Res Lett 34:L07702

    Article  Google Scholar 

  • Halfar J, Steneck RS, Joachimski M et al (2008) Coralline red algae as high-resolution climate recorders. Geology 36:463–466

    Article  Google Scholar 

  • Halfar J, Hetzinger S, Adey WH et al (2011a) Coralline algal growth-increment widths archive North Atlantic climate variability. Palaeogeogr Palaeoclimatol Palaeoecol 302:71–80

    Article  Google Scholar 

  • Halfar J, Williams B, Hetzinger S et al (2011b) 225 years of Bering Sea climate and ecosystem dynamics revealed by coralline algal growth-increment widths. Geology 39:579–582

    Article  Google Scholar 

  • Halfar J, Adey WH, Kronz A et al (2013) Arctic sea-ice decline archived by multicentury annual-resolution record from crustose coralline algal proxy. Proc Natl Acad Sci 110:19737–19741

    Article  Google Scholar 

  • Henrich R, Freiwald A, Wehrmann A et al (1996) Nordic-cold water carbonates: occurrence and controls. In: Reitner J, Neuweiler F, Gunkel F (eds) Global and regional controls on biogenic sedimentation. Gottinger Arbeiten Geol. Palaonton, Gottingen

    Google Scholar 

  • Hetzinger S, Halfar J, Kronz A et al (2009) High-resolution Mg/Ca ratios in a coralline red alga as a proxy for Bering Sea temperature variations from 1902 to 1967. Palaios 24:406–412

    Article  Google Scholar 

  • Hetzinger S, Halfar J, Zack T et al (2011) High-resolution analysis of trace elements in crustose coralline algae from the North Atlantic and North Pacific by laser ablation ICP-MS. Palaeogeogr Palaeoclimatol Palaeoecol 302:81–94

    Article  Google Scholar 

  • Hetzinger S, Halfar J, Mecking JV et al (2012) Marine proxy evidence linking decadal North Pacific and Atlantic climate. Clim Dyn 39:1447–1455

    Article  Google Scholar 

  • Hetzinger S, Halfar J, Zack T et al (2013) Coralline algal Barium as indicator for 20th century northwestern North Atlantic surface ocean freshwater variability. Sci Rep 3:1761

    Article  Google Scholar 

  • Hippler D, Buhl D, Witbaard R et al (2009) Towards a better understanding of magnesium-isotope ratios from marine skeletal carbonates. Geochim Cosmochim Acta 73:6134–6146

    Article  Google Scholar 

  • Hughes MK (2002) Dendrochronology in climatology-the state of the art. Dendrochronologia 20:95–116

    Article  Google Scholar 

  • Huh Y, Chan LH, Zhang L et al (1998) Lithium and its isotopes in major world rivers: implications for weathering and the oceanic budget. Geochim Cosmochim Acta 62:2039–2051

    Article  Google Scholar 

  • IPCC (2013) Summary for policymakers: the physical science basis. In: Working Group I contribution to the IPCC fifth assessment report

    Google Scholar 

  • Kamenos NA (2010) North Atlantic summers have warmed more than winters since 1353, and the response of marine zooplankton. Proc Natl Acad Sci U S A 107:22442–22447

    Article  Google Scholar 

  • Kamenos NA, Law A (2010) Temperature controls on coralline algal skeletal growth. J Phycol 46:331–335

    Article  Google Scholar 

  • Kamenos NA, Cusack M, Moore PG (2008) Coralline algae are global palaeothermometers with bi-weekly resolution. Geochim Cosmochim Acta 72:771–779

    Article  Google Scholar 

  • Kamenos NA, Cusack M, Huthwelker T et al (2009) Mg-lattice associations in red coralline algae. Geochim Cosmochim Acta 73:1901–1907

    Article  Google Scholar 

  • Kamenos NA, Hoey T, Nienow P et al (2012) Reconstructing Greenland Ice sheet runoff using coralline algae. Geology 40:1095–1098

    Article  Google Scholar 

  • Kamenos NA, Burdett HL, Aloisio E et al (2013) Coralline algal structure is more sensitive to rate, rather than the magnitude, of ocean acidification. Glob Chang Biol 19:3621–3628

    Article  Google Scholar 

  • Kinsman DJJ, Holland HD (1969) Co-precipitation of cations with CaCO3. 4: Co-precipitation of Sr2+ with aragonite between 16–96°C. Geochim Cosmochim Acta 33:1–17

    Article  Google Scholar 

  • Lea DW (2006) Elemental and Isotopic proxies of past ocean temperatures. In: Elderfield H (ed) The oceans and marine geochemistry. Elsevier, Amsterdam

    Google Scholar 

  • Lea DW, Shen GT, Boyle EA (1989) Coralline barium records temporal variability in equatorial Pacific upwelling. Nature 340:373–376

    Article  Google Scholar 

  • Lee D, Carpenter SJ (2001) Isotopic disequilibrium in marine calcareous algae. Chem Geol 172:307–329

    Article  Google Scholar 

  • Levin I, Munnich KO, Weiss W (1980) The effect of anthropogenic CO2 and C-14 sources on the distribution of C-14 in the atmosphere. Radiocarbon 22:379–391

    Article  Google Scholar 

  • Littler MM, Littler DS, Hanisak MD (1991) Deep-water rhodolith distribution, productivity, and growth history at sites of formation and subsequent degradation. J Exp Mar Biol Ecol 150:163–182

    Article  Google Scholar 

  • Lough JM, Barnes DJ (2000) Environmental controls on growth of the massive coral Porites. J Exp Mar Biol Ecol 245:225–243

    Article  Google Scholar 

  • Martin S, Gattuso JP (2009) Response of Mediterranean coralline algae to ocean acidification and elevated temperature. Glob Chang Biol 15:2089–2100

    Article  Google Scholar 

  • Martin S, Cohu S, Vignot C et al (2013) One-year experiment on the physiological response of the Mediterranean crustose coralline alga, Lithophyllum cabiochae, to elevated pCO2 and temperature. Ecol Evol 3:676–693

    Article  Google Scholar 

  • McCulloch M, Fallon S, Wyndham T et al (2003) Coral record of increased sediment flux to the inner Great Barrier Reef since European settlement. Nature 421:727–730

    Article  Google Scholar 

  • Milliman JD (1977) Role of calcareous algae in Atlantic continental margin segmentation. In: Flugel E (ed) Fossil algae. Springer, Berlin

    Google Scholar 

  • Milliman JD, Gastner M, Müller J (1971) Utilization of magnesium in coralline algae. Geol Soc Am Bull 82:573–580

    Article  Google Scholar 

  • Moberly RJ (1968) Composition of magnesian calcites of algal and pelcypods by electron microprobe analysis. Sedimentology 11:61–82

    Article  Google Scholar 

  • Moberly R (1970) Microprobe study of diagenesis in calcareous algae. Sedimentology 14:113–123

    Article  Google Scholar 

  • Nelson WA (2009) Calcified macroalgae – critical to coastal ecosystems and vulnerable to change: a review. Mar Freshw Res 60:787–801

    Article  Google Scholar 

  • Oomori T, Kaneshima H, Maezato Y et al (1987) Distribution coefficient of Mg2+ ions between calcite and solution at 10–50-Degrees-C. Mar Chem 20:327–336

    Article  Google Scholar 

  • Pauly M, Kamenos NA, Donohue P, LeDrew E (2015) Coralline algal Mg-O bond strength as a marine pCO2 proxy. Geology 43:267–270

    Google Scholar 

  • Peña V, Bárbara I (2008) Biological importance of an Atlantic European maërl bed off Benencia Island (northwest Iberian Peninsula). Bot Mar 51:493–505

    Article  Google Scholar 

  • Quay PD, Tilbrook B, Wong CS (1992) Oceanic uptake of fossil-fuel CO2 – C-13 evidence. Science 256:74–79

    Article  Google Scholar 

  • Ragazzola F, Foster LC, Form A et al (2012) Ocean acidification weakens the structural integrity of coralline algae. Glob Chang Biol 18:2804–2812

    Article  Google Scholar 

  • Rahimpour-Bonab H, Bone Y, Moussavi-Harami R et al (1997) Geochemical comparisons of modern cool-water calcareous biota, Lacepede Shelf, south Australia. Soc Sediment Geol 56:77–92

    Google Scholar 

  • Ries JB (2006) Mg fractionation in crustose coralline algae: geochemical, biological, and sedimentological implications of secular variation in the Mg/Ca ratio of seawater. Geochim Cosmochim Acta 70:891–900

    Article  Google Scholar 

  • Ries JB (2011) Skeletal mineralogy in a high-CO2 world. J Exp Mar Biol Ecol 403:54–64

    Article  Google Scholar 

  • Rivera MG, Riosmena-Rodríguez R, Foster MS (2004) Age and growth or Lithothamnion muelleri (Corallinales, Rhodophyta) in the southwestern Gulf of California, Mexico. Ciecias Mar 30:235–249

    Google Scholar 

  • Rollion-Bard C, Vigier N, Meibom A et al (2009) Effect of environmental conditions and skeletal ultrastructure on the Li isotopic composition of scleractinian corals. Earth Planet Sci Lett 286:63–70

    Article  Google Scholar 

  • Schmidt GA, Hoffamnn G, Thresher D (2001) Isotopic tracers in coupled models: a new paleo-tool. PAGES News 9:10–11

    Google Scholar 

  • Schöne BR, Fiebig J, Pfeiffer M et al (2005) Climate records from a bivalved Methuselah (Arctica islandica, Mollusca; Iceland). Palaeogeogr Palaeoclimatol Palaeoecol 228:130–148

    Article  Google Scholar 

  • Schwarz AM, Hawes I, Andrew N et al (2005) Primary production potential of non-geniculate coralline algae at Cape Evans, Ross Sea, Antarctica. Mar Ecol Prog Ser 294:131–140

    Article  Google Scholar 

  • Scourse J, Richardson C, Forsythe G et al (2006) First cross-matched floating chronology from the marine fossil record: data from growth lines of the long-lived bivalve mollusc Arctica islandica. The Holocene 16:967–974

    Article  Google Scholar 

  • Shen GT, Dunbar RB (1995) Environmental controls on uranium in reef corals. Geochim Cosmochim Acta 59:2009–2024

    Article  Google Scholar 

  • Steller DL, Riosmena-Rodríguez R, Foster MS et al (2003) Rhodolith bed diversity in the Gulf of California: the importance of rhodolith structure and consequences of disturbance. Aquat Conserv Mar Freshwat Ecosyst 13:S5–S20

    Article  Google Scholar 

  • Stoffyn-Egli P, Mackenzie FT (1984) Mass balance of dissolved lithium in the oceans. Geochim Cosmochim Acta 48:859–872

    Article  Google Scholar 

  • Tudhope AW, Shimmield GB, Chilcott CP et al (1995) Recent changes in climate in the far western equatorial Pacific and their relationship to the Southern Oscillation; oxygen isotope records from massive corals, Papua New Guinea. Earth Planet Sci Lett 136:575–590

    Article  Google Scholar 

  • Urey HC (1947) The thermodynamic properties of isotopic substances. J Chem Soc 562–581

    Google Scholar 

  • Wanamaker AD Jr, Hetzinger S, Halfar J (2011a) Reconstructing mid- to high-latitude marine climate and ocean variability using bivalves, coralline algae, and marine sediment cores from the Northern Hemisphere. Palaeogeogr Palaeoclimatol Palaeoecol 302:1–9

    Article  Google Scholar 

  • Wanamaker AD Jr, Kreutz KJ, Schöne BR et al (2011b) Gulf of Maine shells reveal changes in seawater temperature seasonality during the medieval climate anomaly and the little Ice Age. Palaeogeogr Palaeoclimatol Palaeoecol 302:43–51

    Article  Google Scholar 

  • Wefer G, Berger WH (1991) Isotope paleontology – growth and composition of extant calcareous species. Mar Geol 100:207–248

    Article  Google Scholar 

  • Williams B, Halfar J, Steneck RS et al (2011) Twentieth century delta C-13 variability in surface water dissolved inorganic carbon recorded by coralline algae in the northern North Pacific Ocean and the Bering Sea. Biogeosciences 8:165–174

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nicholas A. Kamenos .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Kamenos, N.A., Burdett, H.L., Darrenougue, N. (2017). Coralline Algae as Recorders of Past Climatic and Environmental Conditions. In: Riosmena-Rodríguez, R., Nelson, W., Aguirre, J. (eds) Rhodolith/Maërl Beds: A Global Perspective. Coastal Research Library, vol 15. Springer, Cham. https://doi.org/10.1007/978-3-319-29315-8_2

Download citation

Publish with us

Policies and ethics