Skip to main content

Effects of Ocean Warming and Acidification on Rhodolith/Maërl Beds

  • Chapter
  • First Online:
Rhodolith/Maërl Beds: A Global Perspective

Part of the book series: Coastal Research Library ((COASTALRL,volume 15))

Abstract

Coralline algae are expected to be adversely impacted by global warming and ocean acidification, although there has been no synthesis of these effects on habitat-forming species. We compiled published responses of maërl and rhodolith-forming species to ocean acidification and warming. Although the response is variable among species, their recruitment, growth, health and survival are usually negatively affected under elevated CO2. Most studies show that coralline algal calcification is adversely affected under near-future ocean acidification scenarios and that in combination with a 1–3 °C increase in seawater temperature this has an even larger impact. Most research has involved relatively short-term experiments on single species, which makes it difficult to predict long-term effects at the ecosystem level because the impact of global changes on coralline algal habitats will depend on the direct impacts on individual species and the indirect effects of altered interspecific interactions. Studies in areas with naturally high CO2 levels show that coralline algae are adversely affected by long-term acidification through increased competition from non-calcified competitors. Coralline algal habitats such as vermetid reefs, coralligene and beds of rhodoliths or maerl are likely to decline in the near future as higher CO2 levels benefit fleshy algae and corrosive waters reduce calcareous habitat complexity and associated biodiversity.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Adey WH (1973) Temperature control of reproduction and productivity in a subarctic coralline alga. Phycologia 12:111–118

    Article  Google Scholar 

  • Agegian CR (1985) The biogeochemical ecology of Porolithon gardineri (Foslie). PhD thesis, University of Hawaii, Honolulu

    Google Scholar 

  • Amado-Filho GM, Moura RL, Bastos AC, Salgado LT, Sumida PY, Guth AZ, Francini-Filho RB, Pereira-Filho GH, Abrantes DP, Brasileiro PS, Bahia RG, Leal RN, Kaufman L, Kleypas JA, Farina M, Thompson FL (2012) Rhodolith beds are major CaCO3 bio-factories in the tropical South West Atlantic. PLoS ONE 7:e35171

    Article  Google Scholar 

  • Andersson AJ, MacKenzie FT, Lerman A (2005) Coastal ocean carbonate ecosystems in the high CO2 world of the Anthropocene. Am J Sci 305:875–918

    Article  Google Scholar 

  • Anthony KRN, Kline DI, Diaz-Pulido G, Dove S, Hoegh-Guldberg O (2008) Ocean acidification causes bleaching and productivity loss in coral reef builders. Proc Natl Acad Sci U S A 105:17442–17446

    Article  Google Scholar 

  • Anthony KRN, Kleypas JA, Gattuso J-P (2011) Coral reefs modify their seawater carbon chemistry – implications for impacts of ocean acidification. Glob Chang Biol 17:3655–3666

    Article  Google Scholar 

  • Arnold T, Mealey C, Leahey H et al (2012) Ocean acidification and the loss of protective phenolics in seagrasses. PLoS One 7(4):e35107

    Article  Google Scholar 

  • Blake C, Maggs CA (2003) Comparative growth rates and internal banding periodicity of maerl species (Corallinales, Rhodophyta) from northern Europe. Phycologia 42:606–612

    Article  Google Scholar 

  • Borowitzka MA (1981) Photosynthesis and calcification in the articulated coralline red algae Amphiroa anceps and Amphiroa foliacea. Mar Biol 62:17–23

    Article  Google Scholar 

  • Borowitzka MA (1987) Calcification in algae: mechanism and the role of metabolism. Crit Rev Plant Sci 6:1–45

    Article  Google Scholar 

  • Bradassi F, Cumani F, Bressan G, Dupont S (2013) Early reproductive stages in the crustose coralline alga Phymatolithon lenormandii are strongly affected by mild ocean acidification. Mar Biol 160:2261–2269

    Article  Google Scholar 

  • Büdenbender J, Riebesell U, Form A (2011) Calcification of the Arctic coralline red algae Lithothamnion glaciale in response to elevated CO2. Mar Ecol Prog Ser 441:79–87

    Article  Google Scholar 

  • Calosi P, Rastrick SPS, Graziano M, Thomas SC, Baggini C, Carter HA, Hall-Spencer JM, Milazzo M, Spicer JI (2013) Distribution of sea urchins living near shallow water CO2 vents is dependent upon species acid–base and ion-regulatory abilities. Mar Pollut Bull 73:470–484

    Article  Google Scholar 

  • Canadell JG, Le Quéré C, Raupach MR, Field CB, Buitenhuis ET, Ciais P, Conway TJ, Gillett NP, Houghton RA, Marland G (2007) Contributions to accelerating atmospheric CO2 growth from economic activity, carbon intensity, and efficiency of natural sinks. Proc Natl Acad Sci U S A 104:18866–18870

    Article  Google Scholar 

  • Cigliano M, Gambi MC, Rodolfo Metalpa R, Patti FP, Hall-Spencer JM (2010) Effects of ocean acidification on invertebrate settlement at volcanic CO2 vents. Mar Biol 157:2489–2502

    Article  Google Scholar 

  • Comeau S, Carpenter RC, Edmunds PJ (2012) Coral reef calcifiers buffer their response to ocean acidification using both bicarbonate and carbonate. Proc R Soc B 280:20122374

    Article  Google Scholar 

  • Comeau S, Edmunds PJ, Spindel NB, Carpenter RC (2013) The responses of eight coral reef calcifiers to increasing partial pressure of CO2 do not exhibit a tipping point. Limnol Oceanogr 58:388–398

    Article  Google Scholar 

  • Connell SD, Russell BD (2010) The direct effects of increasing CO2 and temperature on non-calcifying organisms: increasing the potential for phase shifts in kelp forests. Proc R Soc Lond B Biol Sci 277:1409–1415

    Article  Google Scholar 

  • Cornwall CE, Hepburn CD, Pritchard D, Currie KI, McGraw CM, Hunter KA, Hurd CL (2012) Carbon-use strategies in macroalgae: differential responses to lowered pH and implications for ocean acidification. J Phycol 48:137–144

    Article  Google Scholar 

  • Cornwall CE, Hepburn CD, McGraw CM, Currie KI, Pilditch CA, Hunter KA, Boyd PW, Hurd CL (2013a) Diurnal fluctuations in seawater pH influence the response of a calcifying macroalga to ocean acidification. Proc R Soc B 280:20122201

    Article  Google Scholar 

  • Cornwall CE, Hepburn CD, Pilditch CA, Hurd CL (2013b) Concentration boundary layers around complex assemblages of macroalgae: implications for the effects of ocean acidification on understory coralline algae. Limnol Oceanogr 58:121–130

    Article  Google Scholar 

  • Diaz-Pulido G, Gouzezo M, Tilbrook B, Dove S, Anthony K (2011) High CO2 enhances the competitive strength of seaweeds over corals. Ecol Lett 14:156–162

    Article  Google Scholar 

  • Diaz-Pulido G, Anthony KRN, Kline DI, Dove S, Hoegh-Guldberg O (2012) Interactions between ocean acidification and warming on the mortality and dissolution of coralline algae. J Phycol 48:32–39

    Article  Google Scholar 

  • Digby P (1977) Photosynthesis and respiration in the coralline algae, Clathromorphum circumscriptum and Corallina officinalis and the metabolic basis of calcification. J Mar Biol Assoc U K 57:1111–1124

    Article  Google Scholar 

  • Doropoulos C, Ward S, Diaz-Pulido G, Hoegh-Guldberg O, Mumby PJ (2012) Ocean acidification reduces coral recruitment by disrupting intimate larval-algal settlement interactions. Ecol Lett 15:338–346

    Article  Google Scholar 

  • Doropoulos C, Diaz-Pulido G (2013) High CO2 reduces the settlement of a spawning coral on three common species of crustose coralline algae. Mar Ecol Prog Ser 475:93–99

    Article  Google Scholar 

  • Egilsdottir H, Noisette F, Noel LMLJ, Olafsson J, Martin S (2013) Effects of pCO2 on physiology and skeletal mineralogy in a tidal pool coralline alga Corallina elongata. Mar Biol 160:2103–2112

    Article  Google Scholar 

  • Fabricius KE, Langdon C, Uthicke S, Humphrey C, Noonan S, De’ath G, Okazaki R, Muehllehner N, Glas MS, Lough JM (2011) Losers and winners in coral reefs acclimatized to elevated carbon dioxide concentrations. Nat Clim Chang 1:165–169

    Article  Google Scholar 

  • Foster MS (2001) Rhodoliths: between rocks and soft places. J Phycol 37:659–667

    Article  Google Scholar 

  • Gao K, Aruga Y, Asada K, Ishihara T, Akano T, Kiyohara M (1993) Calcification on the articulated coralline alga Corallina pilulifera, with special reference to the effect of elevated CO2 concentration. Mar Biol 117:129–132

    Google Scholar 

  • Gao KS, Zheng YQ (2010) Combined effects of ocean acidification and solar UV radiation on photosynthesis, growth, pigmentation and calcification of the coralline alga Corallina sessilis (Rhodophyta). Glob Chang Biol 16:2388–2398

    Article  Google Scholar 

  • Hale R, Calosi P, McNeill L, Mieszkowska N, Widdicombe S (2011) Predicted levels of future ocean acidification and temperature rise could alter community structure and biodiversity in marine benthic communities. Oikos 120:661–674

    Article  Google Scholar 

  • Hall-Spencer JM, Rodolfo-Metalpa R, Martin S, Ransome E, Fine M, Turner SM, Rowley SJ, Tedesco D, Buia MC (2008) Volcanic carbon dioxide vents show ecosystem effects of ocean acidification. Nature 454:96–99

    Article  Google Scholar 

  • Hall-Spencer JM, Kelly J, Maggs CA (2010) Background document for maerl beds. OSPAR Commission, London, Publication 491/2010 36 pp. ISBN 978-1-907390-32-6

    Google Scholar 

  • Harley CDG, Anderson KM, Demes KW, Jorve JP, Kordas RL, Coyle TA, Graham MH (2012) Effects of climate change on global seaweed communities. J Phycol 48:1064–1078

    Article  Google Scholar 

  • Hoegh-Guldberg O, Mumby PJ, Hooten AJ, Steneck RS, Greenfield P, Gomez E, Harvell CD, Sale PF, Edwards AJ, Caldeira K, Knowlton N, Eakin CM, Iglesias-Prieto R, Muthiga N, Bradbury RH, Dubi A, Hatziolos ME (2007) Coral reefs under rapid climate change and ocean acidification. Science 318:1737–1742

    Article  Google Scholar 

  • Hepburn CD, Pritchard DW, Cornwall CE, McLeod RJ, Beardall J, Raven JA, Hurd CL (2011) Diversity of carbon use strategies in a kelp forest community: implications for a high CO2 ocean. Glob Chang Biol 17:2488–2497

    Google Scholar 

  • Hofmann LC, Straub S, Bischof K (2012a) Competition between calcifying and noncalcifying temperate marine macroalgae under elevated CO2 levels. Mar Ecol Prog Ser 464:89–105

    Article  Google Scholar 

  • Hofmann LC, Yildiz G, Hanelt D, Bischof K (2012b) Physiological responses of the calcifying rhodophyte, Corallina officinalis (L.), to future CO2 levels. Mar Biol 159:783–792

    Article  Google Scholar 

  • Hurd CL, Cornwall CE, Currie KI, Hepburn CD, McGraw CM, Hunter KA, Boyd P (2011) Metabolically-induced pH fluctuations by some coastal calcifiers exceed projected 22nd century ocean acidification: a mechanism for differential susceptibility? Glob Chang Biol 17:3254–3262

    Article  Google Scholar 

  • Ichiki S, Mizuta H, Yasui H, Yamamoto H (2001) Effects of irradiance and water temperature on the photosynthesis and growth of the crustose coralline alga Lithophyllum yessoense Foslie (Corallinales, Rhodophyceae). Bull Fischeries Sci Hokkaido Univ 52:103–109

    Google Scholar 

  • Inoue S, Kayanne H, Yamamoto S, Kurihara K (2013) Spatial community shift from hard to soft corals in acidified water. Nat Clim Chang 3:683–687

    Article  Google Scholar 

  • IPCC (2013) Summary for policymakers. In Climate Change 2013: the physical science basis. Working group I contribution to the fifth assessment report of the intergovernmental panel on climate change. Cambridge University Press (in press)

    Google Scholar 

  • Jokiel PL, Rodgers KS, Kuffner IB, Andersson AJ, Cox EF, Mackenzie FT (2008) Ocean acidification and calcifying reef organisms: a mesocosm investigation. Coral Reefs 27:473–483

    Article  Google Scholar 

  • Johnson MD, Carpenter RC (2012) Ocean acidification and warming decrease calcification in the crustose coralline alga Hydrolithon onkodes and increase susceptibility to grazing. J Exp Mar Biol Ecol 434–435:94–101

    Article  Google Scholar 

  • Johnson VR, Russell BD, Fabricius KE, Brownlee C, Hall-Spencer JM (2012) Temperate and tropical brown macroalgae thrive, despite decalcification, along natural CO2 gradients. Glob Chang Biol 18:2792–2803

    Article  Google Scholar 

  • Johnson VR, Brownlee C, Rickaby REM, Graziano M, Milazzo M, Hall-Spencer JM (2013) Responses of marine benthic microalgae to elevated CO2. Mar Biol 160:1813–1824

    Article  Google Scholar 

  • Kamenos NA, Burdett HL, Aloisio E, Findlay HS, Martin S, Longbone C, Dunn J, Widdicombe S, Calosi P (2013) Coralline algal structure is more sensitive to rate, rather than the magnitude, of ocean acidification. Glob Chang Biol 19:3621–3628

    Article  Google Scholar 

  • Kamenos NA, Moore PG, Hall-Spencer JM (2004a) Small-scale distribution of juvenile gadoids in shallow inshore waters; what role does maerl play? ICES J Mar Sci 61:422–429

    Article  Google Scholar 

  • Kamenos NA, Moore PG, Hall-Spencer JM (2004b) Nursery-area function of maerl grounds for juvenile queen scallops Aequipecten opercularis and other invertebrates. Mar Ecol Prog Ser 274:183–189

    Article  Google Scholar 

  • Kato A, Hikami M, Kumagai NH, Suzuki A, Nojiri Y, Saka K (2013) Negative effects of ocean acidification on two crustose coralline species using genetically homogeneous samples. Mar Environ Res. doi:10.1016/j.marenvres.2013.10.010, in press

    Google Scholar 

  • King RJ, Schramm W (1982) Calcification in the maerl coralline alga Phymatolithon calcareum: effects of salinity and temperature. Mar Biol 70:197–204

    Google Scholar 

  • Koch M, Bowes G, Ross C, Zhang XH (2012) Climate change and ocean acidification effects on seagrasses and marine macroalgae. Glob Chang Biol 19:103–132

    Article  Google Scholar 

  • Kroeker KJ, Kordas RL, Crim RN, Singh GG (2010) Meta-analysis reveals negative yet variable effects of ocean acidification on marine organisms. Ecol Lett 13(11):1419–1434

    Google Scholar 

  • Kroeker KJ, Micheli F, Gambi MC (2013) Ocean acidification causes ecosystem shifts via altered competitive interactions. Nat Clim Chang 3:156–159

    Article  Google Scholar 

  • Kübler JE, Davison IR, Yarish C (1991) Photosynthetic adaptation to temperature in the red algae Lomentaria baileyana and Lomentaria orcadensis. Br Phycol J 26:9–19

    Article  Google Scholar 

  • Kuffner IB, Andersson AJ, Jokiel PL, Rodgers KS, Mackenzie FT (2008) Decreased abundance of crustose coralline algae due to ocean acidification. Nat Geosci 1:114–117

    Article  Google Scholar 

  • Lüning K (1990) Seaweeds. Their environment, biogeography, and ecophysiology. Wiley Interscience, London, 527 pp

    Google Scholar 

  • McGraw CM, Cornwall CE, Reid MR, Currie KI, Hepburn CD, Boyd P, Hurd CL, Hunter KA (2010) An automated pH-controlled culture system for laboratory-based ocean acidification experiments. Limnol Oceanogr Methods 8:686–694

    Google Scholar 

  • Martin S, Clavier J, Guarini J-M, Chauvaud L, Hily C, Grall J, Thouzeau G, Jean F, Richard J (2005) Comparison of Zostera marina and maerl community metabolism. Aquat Bot 83(3):161–174

    Article  Google Scholar 

  • Martin S, Castets MD, Clavier J (2006) Primary production, respiration and calcification of the temperate free-living coralline alga Lithothamnion corallioides. Aquat Bot 85:121–128

    Article  Google Scholar 

  • Martin S, Clavier J, Chauvaud L, Thouzeau G (2007) Community metabolism in temperate maerl beds. I. Carbon and carbonate fluxes. Mar Ecol Prog Ser 335:19–29

    Article  Google Scholar 

  • Martin S, Cohu S, Vignot C, Zimmerman G, Gattuso J-P (2013) One-year experiment on the physiological response of the Mediterranean crustose coralline alga, Lithophyllum cabiochae, to elevated pCO2 and temperature. Ecol Evol 3(3):676–693

    Article  Google Scholar 

  • Martin S, Gattuso JP (2009) Response of Mediterranean coralline algae to ocean acidification and elevated temperature. Glob Chang Biol 15:2089–2100

    Article  Google Scholar 

  • Martin S, Rodolfo-Metalpa R, Ransome E, Rowley S, Buia MC, Gattuso JP, Hall-Spencer J (2008) Effects of naturally acidified seawater on seagrass calcareous epibionts. Biol Lett 4:689–692

    Article  Google Scholar 

  • Milazzo M, Rodolfo-Metalpa R, Chan VBS, Fine F, Alessi C, Thiyagarajan V, Hall-Spencer JM, Chemello R (2014) Ocean acidification impairs vermetid reef recruitment. Sci Rep 4:4189

    Article  Google Scholar 

  • Nash MC, Opdyke BN, Troitzsch U, Russell BD, Adey WH, Kato A, Diaz-Pulido G, Brent C, Gardner M, Prichard J, Kline DI (2013) Dolomite-rich coralline algae in reefs resist dissolution in acidified conditions. Nat Clim Chang 3:268–272

    Article  Google Scholar 

  • Nash MC, Troitzsch U, Opdyke BN, Trafford JM, Russell BD, Kline DI (2011) First discovery of dolomite and magnesite in living coralline algae and its geobiological implications. Biogeosciences 8:3331–3340

    Article  Google Scholar 

  • Noisette F, Egilsdottir H, Davoult D, Martin S (2013a) Physiological responses of three temperate coralline algae from contrasting habitats to near-future ocean acidification. J Exp Mar Biol Ecol 448:179–187

    Article  Google Scholar 

  • Noisette F, Duong G, Six C, Davoult D, Martin S (2013b) Effects of elevated pCO2 on the metabolism of a temperate rhodolith Lithothamnion corallioides grown under different temperatures. J Phycol 49:746–757

    Article  Google Scholar 

  • Olabarria C, Arenas F, Viejo RM, Gestoso I, Vaz-Pinto F, Incera M, Rubal M, Cacabelos E, Veiga P, Sobrino C (2013) Response of macroalgal assemblages from rockpools to climate change: effects of persistent increase in temperature and CO2. Oikos 122:1065–1079

    Article  Google Scholar 

  • Olischläger M, Bartsch I, Gutow L, Wiencke C (2012) Effects of ocean acidification on different life-cylce stages of the kelp Laminaria hyperborea (Phaeophyceae). Bot Mar 55:511–525

    Article  Google Scholar 

  • Peña V, Barbara I, Grall J, Maggs CA, Hall-Spencer JM (2014) The diversity of seaweeds on maerl in the NE Atlantic. Mar Biodivers. doi:10.1007/s12526-014-0214-7

    Google Scholar 

  • Porzio L, Buia MC, Hall-Spencer JM (2011) Effects of ocean acidification on macroalgal communities. J Exp Mar Biol Ecol 400:278–287

    Article  Google Scholar 

  • Porzio L, Garrard SL, Buia MC (2013) The effects of ocean acidification on early algal colonization stages at natural CO2 vents. Mar Biol 160:2247–2259

    Article  Google Scholar 

  • Ragazzola F, Foster LC, Form AU, Anderson PSL, Hansteen TH, Fietzke J (2012) Ocean acidification weakens the structural integrity of coralline algae. Glob Chang Biol 18:2804–2812

    Article  Google Scholar 

  • Ragazzola F, Foster LC, Form AU, Büscher J, Hansteen TH, Fietzke J (2013) Phenotypic plasticity of coralline algae in a high CO2 world. Ecol Evol 3(10):3436–3446

    Google Scholar 

  • Raven JA, Beardall J (2003) Carbon acquisition mechanisms of algae: carbon dioxide diffusion and carbon dioxide concentrating mechanisms. In: Larkum AWD, Raven JA, Douglas S (eds) Photosynthesis in algae. Kluwer, Dordrecht, pp 225–244

    Google Scholar 

  • Raven JA, Johnston AM, Kübler JE, Korb RE, McInroy SG, Handley LL, Scrimgeour CM, Walker DI, Beardall J, Vanderklift MA, Fredriksen S, Dunton KH (2002) Mechanistic interpretation of carbon isotope discrimination by marine macroalgae and seagrasses. Funct Plant Biol 29:355–378

    Article  Google Scholar 

  • Raven JA, Giordano M, Beardall J, Maberly SC (2012) Agal evolution in relation to atmospheric CO2: carboxylases, carbon-concentrating mechanisms and carbon oxidation. Phil Trans R Soc B 367:493–507

    Article  Google Scholar 

  • Ries JB, Cohen AL, McCorkle DC (2009) Marine calcifiers exhibit mixed responses to CO2-induced ocean acidification. Geology 37:1131–1134

    Article  Google Scholar 

  • Rodolfo-Metalpa R, Houlbreque F, Tambutte E, Boisson F, Baggini C, Patti FP, Jeffree R, Fine M, Foggo A, Gattuso JP, Hall-Spencer JM (2011) Coral and mollusc resistance to ocean acidification adversely affected by warming. Nat Clim Chang 1:308–312

    Article  Google Scholar 

  • Roleda MY, Boyd PW, Hurd CL (2012) Before ocean acidification: calcifier chemistry lessons. J Phycol 48:840–843

    Article  Google Scholar 

  • Russell BD, Thompson JA, Falkenberg LJ, Connell SD (2009) Synergistic effects of climate change and local stressors: CO2 and nutrient-driven change in subtidal rocky habitats. Glob Chang Biol 15:2153–2162

    Article  Google Scholar 

  • Russell BD, Passarelli CA, Connell SD (2011) Forecasted CO2 modifies the influence of light in shaping subtidal habitat. J Phycol 47:744–752

    Article  Google Scholar 

  • Russell BD, Connell SD, Uthicke S, Muehllehner N, Fabricius KE, Hall-Spencer JM (2013) Future seagrass beds: increased productivity leading to carbon storage? Mar Pollut Bull 73:463–469

    Article  Google Scholar 

  • Semesi IS, Kangwe J, Bjork M (2009) Alterations in seawater pH and CO2 affect calcification and photosynthesis in the tropical coralline alga, Hydrolithon sp. (Rhodophyta). Estuar Coast Shelf Sci 84:337–341

    Article  Google Scholar 

  • Smith AD, Roth AA (1979) Effect of carbon dioxide concentration on calcification in the red coralline alga Bossiella orbigniana. Mar Biol 52:217–225

    Article  Google Scholar 

  • Steller DL, Hernandez-Ayon JM, Riosmena-Rodriguez R, Cabello-Pasini A (2007) Effect of temperature on photosynthesis, growth and calcification rates of the free-living coralline alga Lithophyllum margaritae. Cienc Mar 33:441–456

    Google Scholar 

  • Suggett DJ, Hall-Spencer JM, Rodolfo-Metalpa R, Boatman TG, Payton R, Pettay DT, Johnson VR, Warner ME, Lawson T (2012) Sea anemones may thrive in a high CO2 world. Glob Chang Biol 10:3015–3025

    Article  Google Scholar 

  • Ware JR, Smith SV, Reaka-Kudla ML (1992) Coral reefs: sources or sinks of atmospheric CO2? Coral Reefs 11:127–130

    Article  Google Scholar 

  • Wernberg T, Russell BD, Thomsen MS, Gurgel CFD, Bradshaw CJA, Poloczanska ES, Connell SD (2011) Seaweed communities in retreat from ocean warming. Curr Biol 21:1828–1832

    Article  Google Scholar 

  • Wiencke C, Bischof K (2012) Seaweed biology: novel insights into ecophysiology, ecology and utilization, vol 219, Ecological Studies. Springer, Berlin/Heidelberg

    Google Scholar 

  • Wilson S, Blake C, Berges JA, Maggs CA (2004) Environmental tolerances of free-living coralline algae (maerl): implications for European marine conservation. Biol Conserv 120:283–293

    Article  Google Scholar 

  • Wood R (1999) Reef evolution. Oxford University Press, Inc., New York, 414 pp

    Google Scholar 

  • Wootton JT, Pfister CA, Forester JD (2008) Dynamic patterns and ecological impacts of declining ocean pH in a high-resolution multi-year dataset. Proc Natl Acad Sci U S A 105:18848–18853

    Article  Google Scholar 

Download references

Acknowledgements

The authors are grateful to the reviewer for valuable comments and suggestions on a previous version of this manuscript. This work is a contribution to the “European Project on Ocean Acidification” (EPOCA) and EU’Mediterranean Sea Acidification under a changing climate’ project (MedSeA) which received funding from the European Community (grant agreements 211384 and 265103).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sophie Martin .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Martin, S., Hall-Spencer, J.M. (2017). Effects of Ocean Warming and Acidification on Rhodolith/Maërl Beds. In: Riosmena-Rodríguez, R., Nelson, W., Aguirre, J. (eds) Rhodolith/Maërl Beds: A Global Perspective. Coastal Research Library, vol 15. Springer, Cham. https://doi.org/10.1007/978-3-319-29315-8_3

Download citation

Publish with us

Policies and ethics